Skip to main content
Log in

Hesperetin induces the apoptosis of hepatocellular carcinoma cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species, ATP and calcium

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

A Correction to this article was published on 22 March 2019

Abstract

Hesperetin, a flavonoid from citrus fruits, has been proved to possess biological activity on various types of human cancers. However, few related studies on hepatocellular carcinoma are available. In this study, we aimed to investigate the effect of hesperetin on hepatocellular carcinoma cells in vitro and in vivo and clarify its potentially specific mechanism. Compared with the control group, the proliferations of hepatocellular carcinoma cells in hesperetin groups were significantly inhibited (P < 0.05), and a dose- and time-dependent inhibition of cell viability was observed. When pretreated with H2O2 (1 mM) or N-acetyl-l-cysteine (5 mM), the inhibition of cell viability by hesperetin was enhanced or reduced, respectively (P < 0.05). Similarly, the levels of intracellular ROS, ATP and Ca2+ changed in different groups (P < 0.05). The results of Hoechst 33258 staining showed that the percentages of apoptotic cells in hesperetin groups are remarkably higher than that in control group (P < 0.05). And the results of Western blot showed that hesperetin caused an increase in the levels of cytosolic AIF, cytosolic Apaf-1, cytosolic Cyt C, caspase-3, caspase-9 and Bax and a decrease in that of Bcl-2, mitochondrial AIF, mitochondrial Apaf-1 and mitochondrial Cyt C (P < 0.05). Meanwhile, hesperetin significantly inhibited the growth of xenograft tumors. Our study suggests that hesperetin could inhibit the proliferation and induce the apoptosis of hepatocellular carcinoma via triggering the activation of the mitochondrial pathway by increasing the levels of intracellular ROS, ATP and Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  2. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.

    Article  PubMed  Google Scholar 

  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  4. Monteil M, Migianu-Griffoni E, Sainte-Catherine O, Di Benedetto M, Lecouvey M. Bisphosphonate prodrugs: synthesis and biological evaluation in HuH7 hepatocarcinoma cells. Eur J Med Chem. 2014;77:56–64.

    Article  CAS  PubMed  Google Scholar 

  5. Tang TC, Man S, Lee CR, Xu P, Kerbel RS. Impact of metronomic UFT/cyclophosphamide chemotherapy and antiangiogenic drug assessed in a new preclinical model of locally advanced orthotopic hepatocellular carcinoma. Neoplasia. 2010;12:264–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Gil-Izquierdo A, Gil MI, Ferreres F, Tomás-Barberán FA. In vitro availability of flavonoids and other phenolics in orange juice. J Agric Food Chem. 2001;49:1035–41.

    Article  CAS  PubMed  Google Scholar 

  7. Garg A, Garg S, Zaneveld LJ, Singla AK. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res. 2001;15:655–69.

    Article  CAS  PubMed  Google Scholar 

  8. Choi EJ. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer. 2007;59:115–9.

    Article  CAS  PubMed  Google Scholar 

  9. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;12(74):2157–84.

    Article  Google Scholar 

  10. Sambantham S, Radha M, Paramasivam A, Anandan B, Malathi R, Chandra SR, Jayaraman G. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev. 2013;14:4347–52.

    Article  PubMed  Google Scholar 

  11. Ye L, Chan FL, Chen S, Leung LK. The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. J Nutr Biochem. 2012;23:1230–7.

    Article  CAS  PubMed  Google Scholar 

  12. Alshatwi AA, Ramesh E, Periasamy VS, Subash-Babu P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol. 2013;27:581–92.

    Article  CAS  PubMed  Google Scholar 

  13. Aranganathan S, Nalini N. Antiproliferative efficacy of hesperetin (citrus flavanoid) in 1,2-dimethylhydrazine-induced colon cancer. Phytother Res. 2013;27:999–1005.

    Article  CAS  PubMed  Google Scholar 

  14. O’Prey J, Brown J, Fleming J, Harrison PR. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol. 2003;66:2075–88.

    Article  PubMed  Google Scholar 

  15. Yang HL, Chen SC, Senthil Kumar KJ, Yu KN, Lee Chao PD, Tsai SY, Hou YC, Hseu YC. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem. 2012;60:522–32.

    Article  CAS  PubMed  Google Scholar 

  16. Haidari F, Ali Keshavarz S, Reza Rashidi M, Shahi M. Orange juice and hesperetin supplementation to hyperuricemic rats alter oxidative stress markers and xanthine oxidoreductase activity. J Clin Biochem Nutr. 2009;45:285–91.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sivagami G, Vinothkumar R, Bernini R, Preethy CP, Riyasdeen A, Akbarsha MA, Menon VP, Nalini N. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line—a comparative study. Food Chem Toxicol. 2012;50:660–71.

    Article  CAS  PubMed  Google Scholar 

  18. Bae YS, Oh H, Rhee SG, Yoo YD. Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 2011;32:491–509.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012;2012:936486.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Matsuzawa A, Ichijo H. Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal. 2005;7:472–81.

    Article  CAS  PubMed  Google Scholar 

  21. Tarasov AI, Griffiths EJ, Rutter GA. Regulation of ATP production by mitochondrial Ca(2 +). Cell Calcium. 2012;52:28–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem. 2012;287:31674–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lewis A, Hayashi T, Su TP, Betenbaugh MJ. Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival. J Bioenerg Biomembr. 2014;46:1–15.

    Article  CAS  PubMed  Google Scholar 

  24. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–29.

    Article  CAS  PubMed  Google Scholar 

  25. Felsenfeld A, Rodriguez M, Levine B. New insights in regulation of calcium homeostasis. Curr Opin Nephrol Hypertens. 2013;22:371–6.

    Article  CAS  PubMed  Google Scholar 

  26. Brini M, Calì T, Ottolini D, Carafoli E. The plasma membrane calcium pump in health and disease. FEBS J. 2013;280:5385–97.

    Article  CAS  PubMed  Google Scholar 

  27. Samanta K, Douglas S, Parekh AB. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation. PLoS ONE. 2014;9:e101188.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287:C817–33.

    Article  CAS  PubMed  Google Scholar 

  29. Brinkkoetter PT, Song H, Lösel R, Schnetzke U, Gottmann U, Feng Y, Hanusch C, Beck GC, Schnuelle P, Wehling M, van der Woude FJ, Yard BA. Hypothermic injury: the mitochondrial calcium, ATP and ROS love-hate triangle out of balance. Cell Physiol Biochem. 2008;22:195–204.

    Article  CAS  PubMed  Google Scholar 

  30. Voronina S, Okeke E, Parker T, Tepikin A. How to win ATP and influence Ca(2 +) signaling. Cell Calcium. 2014;55:131–8.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Wolfram J, Shen H, Fang X, Ferrari M. Hesperetin: an inhibitor of the transforming growth factor-β (TGF-β) signaling pathway. Eur J Med Chem. 2012;58:390–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Yang Y, Wolfram J, Boom K, Fang X, Shen H, Ferrari M. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochem Funct. 2013;31:374–9.

    Article  CAS  PubMed  Google Scholar 

  33. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305:626–9.

    Article  CAS  PubMed  Google Scholar 

  34. Chen Q, Lesnefsky EJ. Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. FEBS Lett. 2011;585:921–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by research grants from the Natural Science Foundation of Hubei Province (No. 2014CKB494).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Song, J., Wu, D. et al. Hesperetin induces the apoptosis of hepatocellular carcinoma cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species, ATP and calcium. Med Oncol 32, 101 (2015). https://doi.org/10.1007/s12032-015-0516-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0516-z

Keywords

Navigation