Skip to main content

Advertisement

Log in

Protective Effects of Zinc on Spinal Cord Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Spinal cord injury is a serious disease of the central nervous system, but there is no effective treatment. And zinc is an essential nutrient for human body and participates in many physiological processes, such as immune response, homeostasis, oxidative stress, cell cycle progression, DNA replication, DNA damage repair, apoptosis, and aging. This article mainly summarizes that zinc could predict the prognosis and treat the spinal cord injury. Especially, zinc could help to inhibit inflammation, regulate autophagy, and reduce oxidative stress. However, excessive zinc will damage neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adjepong D, Jahangir S, Malik BH (2020) The effect of zinc on post-neurosurgical wound healing: a review. Cureus 12(1):e6770

    PubMed  PubMed Central  Google Scholar 

  • Ahuja CS, Martin AR, Fehlings M (2016) Recent advances in managing a spinal cord injury secondary to trauma. F1000Res 5

  • Allam R, Lawlor KE, Yu EC et al (2014) Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep 15(9):982–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar MA, Al Shehabi TS, Eid AH (2016) Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci 10:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Aras MA, Hara H, Hartnett KA, Kandler K, Aizenman E (2009) Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning. J Neurochem 110(1):106–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Wang G, Liu X, Wei M, Zhang Q (2017) Low-after-high glucose down-regulated Cx43 in H9c2 cells by autophagy activation via cross-regulation by the PI3K/Akt/mTOR and MEK/ERK(1/2) signal pathways. Endocrine 56(2):336–345

    Article  CAS  PubMed  Google Scholar 

  • Bonaventura P, Benedetti G, Albarède F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14(4):277–285

    Article  CAS  PubMed  Google Scholar 

  • Chasapis CT, Kandias NG, Episkopou V, Bentrop D, Spyroulias GA (2012) NMR-based insights into the conformational and interaction properties of Arkadia RING-H2 E3 Ub ligase. Proteins 80(5):1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME (2020) Recent aspects of the effects of zinc on human health. Arch Toxicol 94(5):1443–1460

    Article  CAS  PubMed  Google Scholar 

  • Cruse JM, Lewis RE, Dilioglou S, Roe DL, Wallace WF, Chen RS (2000) Review of immune function, healing of pressure ulcers, and nutritional status in patients with spinal cord injury. J Spinal Cord Med 23(2):129–135

    Article  CAS  PubMed  Google Scholar 

  • Cruz KJ, de Oliveira AR, Marreiro Ddo N (2015) Antioxidant role of zinc in diabetes mellitus. World J Diabetes 6(2):333–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Dev T, Sethuraman G (2017) Diagnosis of acrodermatitis enteropathica in resource limited settings. BMJ Case Rep 2017

  • Ding W, Ge Y, Sun H et al (2021) ZIP8 mediates the extracellular matrix degradation of nucleus pulposus cells via NF-κB signaling pathway. Biochem Biophys Res Commun 550:30–36

    Article  CAS  PubMed  Google Scholar 

  • Fleming JC, Norenberg MD, Ramsay DA et al (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129(Pt 12):3249–3269

    Article  PubMed  Google Scholar 

  • Frazzini V, Rockabrand E, Mocchegiani E, Sensi SL (2006) Oxidative stress and brain aging: is zinc the link. Biogerontology 7(5–6):307–314

    Article  CAS  PubMed  Google Scholar 

  • Gruber K, Maywald M, Rosenkranz E, Haase H, Plumakers B, Rink L (2013) Zinc deficiency adversely influences interleukin-4 and interleukin-6 signaling. J Biol Regul Homeost Agents 27(3):661–671

    CAS  PubMed  Google Scholar 

  • Heller RA, Sperl A, Seelig J et al (2020) Zinc concentration dynamics indicate neurological impairment odds after traumatic spinal cord injury. Antioxidants (Basel) 9(5)

  • Higashi Y, Aratake T, Shimizu S, Shimizu T, Saito M (2019) Brain zinc dyshomeostasis and glial cells in ischemic stroke. Nihon Yakurigaku Zasshi 154(3):138–142

    Article  CAS  PubMed  Google Scholar 

  • Hough MA, Hasnain SS (2003) Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 A. Structure 11(8):937–946

  • Hutson TH, Di Giovanni S (2019) The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nat Rev Neurol 15(12):732–745

    Article  PubMed  Google Scholar 

  • Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-Dependent NF-Κb Signaling Inflammopharmacology 25(1):11–24

    CAS  PubMed  Google Scholar 

  • Ji SG, Medvedeva YV, Weiss JH (2020) Zn(2+) entry through the mitochondrial calcium uniporter is a critical contributor to mitochondrial dysfunction and neurodegeneration. Exp Neurol 325:113161

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Li M, He F, Zhou S, Zhu L (2017) Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 14(1):207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kijima K, Kubota K, Hara M et al (2019) The acute phase serum zinc concentration is a reliable biomarker for predicting the functional outcome after spinal cord injury. EBioMedicine 41:659–669

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Jeon J, Shin M et al (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156(4):730–743

    Article  CAS  PubMed  Google Scholar 

  • Klotz LO, Kröncke KD, Buchczyk DP, Sies H (2003) Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 133(5 Suppl 1):1448S-S1451

    Article  CAS  PubMed  Google Scholar 

  • Krebs NF (2013) Update on zinc deficiency and excess in clinical pediatric practice. Ann Nutr Metab 62(Suppl 1):19–29

    Article  CAS  PubMed  Google Scholar 

  • Krezel A, Maret W (2008) Thionein/metallothionein control Zn(II) availability and the activity of enzymes. J Biol Inorg Chem 13(3):401–409

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Park MH, Kim HJ, Koh JY (2010) Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 58(10):1186–1196

    Article  PubMed  Google Scholar 

  • Lehvy AI, Horev G, Golan Y, Glaser F, Shammai Y, Assaraf YG (2019) Alterations in ZnT1 expression and function lead to impaired intracellular zinc homeostasis in cancer. Cell Death Discov 5:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Levenson CW (2005) Trace metal regulation of neuronal apoptosis: from genes to behavior. Physiol Behav 86(3):399–406

    Article  CAS  PubMed  Google Scholar 

  • Li D, Tian H, Li X et al (2020) Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells. Life Sci 245:117351

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen S, Mao L et al (2019) Zinc improves functional recovery by regulating the secretion of granulocyte colony stimulating factor from microglia/macrophages after spinal cord injury. Front Mol Neurosci 12:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang L, Li K et al (2015) ZNF32 inhibits autophagy through the mTOR pathway and protects MCF-7 cells from stimulus-induced cell death. Sci Rep 5:9288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Tian H, Lin J et al (2020) Zinc promotes autophagy and inhibits apoptosis through AMPK/mTOR signaling pathway after spinal cord injury. Neurosci Lett 736:135263

    Article  CAS  PubMed  Google Scholar 

  • Livingstone C (2015) Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract 30(3):371–382

    Article  CAS  PubMed  Google Scholar 

  • Manzerra P, Behrens MM, Canzoniero LM et al (2001) Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc Natl Acad Sci U S A 98(20):11055–11061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani E, Cattini L, Neri S et al (2006) Simultaneous evaluation of circulating chemokine and cytokine profiles in elderly subjects by multiplex technology: relationship with zinc status. Biogerontology 7(5–6):449–459

    Article  CAS  PubMed  Google Scholar 

  • Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR (2017) Zinc and oxidative stress: current mechanisms. Antioxidants (Basel) 6(2)

  • Martins-Macedo J, Lepore AC, Domingues HS, Salgado AJ, Gomes ED, Pinto L (2021) Glial restricted precursor cells in central nervous system disorders: current applications and future perspectives. Glia 69(3):513–531

    Article  PubMed  Google Scholar 

  • Mortadza SS, Sim JA, Stacey M, Jiang LH (2017) Signalling mechanisms mediating Zn(2+)-induced TRPM2 channel activation and cell death in microglial cells. Sci Rep 7:45032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr MB, Gensel JC (2018) Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15(3):541–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pae M, Meydani SN, Wu D (2012) The role of nutrition in enhancing immunity in aging. Aging Dis 3(1):91–129

    PubMed  Google Scholar 

  • Pelmenschikov V, Siegbahn PE (2005) Copper-zinc superoxide dismutase: theoretical insights into the catalytic mechanism. Inorg Chem 44(9):3311–3320

    Article  CAS  PubMed  Google Scholar 

  • Penny ME (2013) Zinc supplementation in public health. Ann Nutr Metab 62(Suppl 1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Scrivo A, Bourdenx M, Pampliega O, Cuervo AM (2018) Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol 17(9):802–815

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheline CT, Cai AL, Zhu J, Shi C (2010) Serum or target deprivation-induced neuronal death causes oxidative neuronal accumulation of Zn2+ and loss of NAD+. Eur J Neurosci 32(6):894–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Song WJ, Jeong MS, Choi DM, Kim KN, Wie MB (2019) Zinc oxide nanoparticles induce autophagy and apoptosis via oxidative injury and pro-inflammatory cytokines in primary astrocyte cultures. Nanomaterials (Basel) 9(7)

  • Tran AP, Warren PM, Silver J (2020) Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Exp Neurol 328:113276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilella A, Belletti D, Sauer AK et al (2018) Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer’s disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. J Trace Elem Med Biol 49:210–221

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Chen C, Yang L et al (2019) Role of Nrf2/HO-1 signal axis in the mechanisms for oxidative stress-relevant diseases. Zhong Nan Da Xue Xue Bao Yi Xue Ban 44(1):74–80

    CAS  PubMed  Google Scholar 

  • Wang Y, Me X, Zhang L, Lv G (2011a) Supplement moderate zinc as an effective treatment for spinal cord injury. Med Hypotheses 77(4):589–590

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mei X, Zhang L, Lv G (2011b) The correlation among the dynamic change of Zn2+, ZnT-1, and brain-derived neurotrophic factor after acute spinal cord injury in rats. Biol Trace Elem Res 143(1):351–358

    Article  CAS  PubMed  Google Scholar 

  • White JV, Guenter P, Jensen G, Malone A, Schofield M (2012) Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). J Acad Nutr Diet 112(5):730–738

    Article  PubMed  Google Scholar 

  • Yin Y, Zhao Y, Han S, Zhang N, Chen H, Wang X (2017) Autophagy-ERK1/2-involved disinhibition of hippocampal neurons contributes to the pre-synaptic toxicity induced by Aβ42 exposure. J Alzheimers Dis 59(3):851–869

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Li JX, Fujino M, Zhuang J, Li XK (2013) Development and treatments of inflammatory cells and cytokines in spinal cord ischemia-reperfusion injury. Mediators Inflamm 2013:701970

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 81871556 and 82072165) and Liaoning Revitalization Talents Program (No. XLYC1902108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifan Mei.

Ethics declarations

Consent for Publication

Written informed consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Li, Y., Shen, X. et al. Protective Effects of Zinc on Spinal Cord Injury. J Mol Neurosci 71, 2433–2440 (2021). https://doi.org/10.1007/s12031-021-01859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01859-x

Keywords

Navigation