Skip to main content

Advertisement

Log in

Amyloid-β Activates Microglia and Regulates Protein Expression in a Manner Similar to Prions

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Prions are the only convincingly demonstrated proteinaceous infectious particle, yet recent studies find that amyloid-β peptide (Aβ) aggregates are capable of self-propagation, which induces amyloidosis pathology in Alzheimer’s disease (AD) model mice that is similar to the self-propagation phenomenon of prions in neurons. Gliosis is a common hallmark of AD and prion diseases, in which activated microglia accumulate around abnormal protein deposits. Analyses of the characteristics of activated microglia induced by Aβ in comparison with those induced by prions will provide new insight into the pathogenesis of AD. Therefore, we compared the characteristics of BV-2 cells (model microglia) activated by Aβ fibrillar peptides (Aβ1-42) and prions (PrP106-126). Aβ1-42 and PrP106-126, as well as the supernatants of the media collected from BV-2 cells cocultured with Aβ1-42 and PrP106-126, were potent activators of BV-2 microglial activity, but the chemotaxis index (CI) induced by Aβ1-42 was significantly higher than that induced by PrP106-126 at each concentration. Aβ1-42 and PrP106-126 increased the proliferation index (PI) and upregulated monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor beta 1 (TGF-β1) expression after 12 h of exposure. Our results show that Aβ activates microglia and regulates microglial protein expression in a manner similar to prions and, thus, provide new insight into the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arispe N, Doh M (2002) Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease Aβ (1–40) and (1–42) peptides. FASEB J 16:1526–1536

    Article  CAS  PubMed  Google Scholar 

  • Bamberger M, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar-Amyloid mediates microglial activation. J Neurosci 23:2665–2674

    CAS  PubMed  Google Scholar 

  • Barnham KJ, Cappai R, Beyreuther K, Masters C, Hill AF (2006) Delineating common molecular mechanisms in Alzheimer’s and prion diseases. Trends Biochem Sci 31:465–472

    Article  CAS  PubMed  Google Scholar 

  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A et al (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554

    CAS  PubMed  Google Scholar 

  • Checler F, Vincent B (2002) Alzheimer’s and prion diseases: distinct pathologies, common proteolytic denominators. Trends Neurosci 25:616–620

    Article  CAS  PubMed  Google Scholar 

  • Chromy BA, Nowak RJ, Lambert M (2003) Self-assembly of Aβ1-42 into globular neurotoxins. Biochemistry 42:12749–12760

    Article  CAS  PubMed  Google Scholar 

  • Ciesielski-Treska J, Grant NJ, Ulrich G, Corrotte M, Bailly Y, Haeberle A-M et al (2004) Fibrillar prion peptide (106–126) and scrapie prion protein hamper phagocytosis in microglia. Glia 46:101–115

    Article  PubMed  Google Scholar 

  • Dermaut B, Croes EA, Rademakers R, Van Den Broeck M, Cruts M et al (2003) PRNP Val 129 homozygosity increases risk for early-onset Alzheimer’s disease. Ann Neurol 3:409–412

    Article  Google Scholar 

  • El Khoury J, Toft M, Hickman SE et al (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438

    Article  PubMed  Google Scholar 

  • Felton LM, Cunningham C, Rankine EL, Waters S, Boche D, Perry VH (2005) MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol Dis 20:283–295

    Article  CAS  PubMed  Google Scholar 

  • Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O et al (1993) Neurotoxicity of a prion protein fragment. Nature 362:543–546

    Article  CAS  PubMed  Google Scholar 

  • Franz M, Eiden M, Balkema-Buschmann A, Greenlee J, Schatzl H, Dunzendorfer S, Kaser A, Meierhofer C, Tilg H, Wiedermann CJ (2000) Dendritic cell migration in different micropore filter assays. Immunol Lett 71:5–11

    Article  Google Scholar 

  • Garção P, Oliveira CR, Agostinho P (2006) Comparative study of microglia activation induced by amyloid-beta and prion peptides: role in neurodegeneration. J Neurosci Res 84:182–193

    Article  PubMed  Google Scholar 

  • Gavín R, Ureña J, Rangel A, Pastrana MA, Requena JR, Soriano E et al (2008) Fibrillar prion peptide PrP(106-126) treatment induces Dab1 phosphorylation and impairs APP processing and Aβ production in cortical neurons. Neurobiol Dis 30:243–254

    Article  PubMed  Google Scholar 

  • Hainfellner JA, Wanschitz J, Jellinger K, Liberski PP, Gullotta F, Budka H (1998) Coexistence of Alzheimer-type neuropathology in Creutzfeldt-Jakob disease. Acta Neuropathol 96:116–122

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT (2006) Inflammation in Alzheimer’s disease. Clin Neurosci Res 6:247–260

    Article  CAS  Google Scholar 

  • Horvath RJ, Nutile-McMenemy N, Alkaitis MS, Deleo JA (2008) Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. J Neurochem 107:557–569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishizuka K, Kitamura T et al (1997) Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin Neurosci 51:135–138

    Article  CAS  PubMed  Google Scholar 

  • Johnstone M, Gearing AJH, Miller KM (1993) A central role for astrocytes in the inflammatory response to β-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol 93:182–193

    Article  Google Scholar 

  • Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70(4):532–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kallithraka S, Bakker J, Clifford MN, Vallis L (2001) Correlations between saliva protein composition and some T-I parameters of astringency. Food Qual Prefer 12:145–152

    Article  Google Scholar 

  • Kaneider NC, Kaser A, Dunzendorfer S, Tilg H, Wiedermann CJ (2003) Sphingosine kinase-dependent migration of immature dendritic cells in response to neurotoxic prion protein fragment. J Virol 77:5535–5539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konturek PC, Bazela K, Kukharskyy V, Bauer M, Hahn EG, Schuppan D (2005) Helicobacter pylori upregulates prion protein expression in gastric mucosa: a possible link to prion disease. World J Gastroenterol 11:7651–7656

    CAS  PubMed  Google Scholar 

  • Le Y, Yazawa H, Gong W, Yu Z, Ferrans VJ, Ferrans et al (2001) The neurotoxic prion peptide fragment PrP(106-126) is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1. J Immunol 166:1448–1451

    Article  CAS  PubMed  Google Scholar 

  • Mathieu M, Chabry J (2004) Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci 24:620–627

    Article  Google Scholar 

  • Muhleisen H, Gehrmann J, Meyermann R (1995) Reactive microglia in Creutzfeldt–Jakob disease. Neuropathol Appl Neurobiol 6:505–517

    Article  Google Scholar 

  • Pike CJ, Walencewicz AJ, Glabe CJ, Cotman CW (1991) In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563:311–314

    Article  CAS  PubMed  Google Scholar 

  • Powers JM, Liu Y, Hair LS, Kascsack RJ, Lewis LD, Wester DD et al (1991) Concomitant Creutzfeldt-Jakob and Alzheimer diseases. Acta Neuropathol 83:95–98

    Article  CAS  PubMed  Google Scholar 

  • Prat E, Baron P, Meda L, Scarpini E, Galimberti D, Ardolino G et al (2000) The human astrocytoma cell line U373MG produces monocyte chemotactic protein (MCP)-1 upon stimulation with β-amyloid protein. Neurosci Lett 283:177–180

    Article  CAS  PubMed  Google Scholar 

  • Riemenschneider M, Klopp N, Xiang W, Wagenpfeil S, Vollmert C, Muller U et al (2004) Prion protein codon 129 polymorphism and risk of Alzheimer disease. Neurology 63(2):364–366

    Article  CAS  PubMed  Google Scholar 

  • Roher AE, Ball MJ, Bhave SV, Wakade AR (1991) β-Amyloid from Alzheimer disease brains inhibits sprouting and survival of sympathetic neurons. Biochem Biophys Res Commun 174:572–579

    Article  CAS  PubMed  Google Scholar 

  • Rota E, Bellone G, Rocca P, Bergamasco B, Emanuelli G, Ferrero P (2006) Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients. Neurol Sci 27:33–39

    Article  CAS  PubMed  Google Scholar 

  • Safar J, Roller PP, Gajdusek DC, Gibbs CJ Jr (1993) Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J Biol Chem 268:20276–20284

    CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaguchi H, Ogawa A, Sugihara S, Nakazato Y (1997) Microglia activation in early stages of amyloid beta protein deposition. Acta Neuropathol 94:316–322

    Article  CAS  PubMed  Google Scholar 

  • Small DH, McLean CA (1999) Alzheimer’s disease and the amyloid β protein: what is the role of amyloid-β. J Neurochem 73:443–449

    Article  CAS  PubMed  Google Scholar 

  • Stine WB, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622

    Article  CAS  PubMed  Google Scholar 

  • Vascellari S, Orrù CD, Hughson AG, King D, Barron R, Wilham J et al (2012) Prion seeding activities of mouse scrapie strains with divergent PrPSc protease sensitivities and amyloid plaque content using RT-QuIC and eQuIC. PLoS One 7(11):e48969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verma A, Prasad KN, Singh AK et al (2010) Evaluation of the MTT lymphocyte proliferation assay for the diagnosis of neurocysticercosis. J Microbiol Methods 81:175–178

    Article  CAS  PubMed  Google Scholar 

  • Voigtländer T, Klöppel S, Birner P, Jarius C, Flicker H, Verghese-Nikolakaki S et al (2001) Marked increase of neuronal prion protein immunoreactivity in Alzheimer’s disease and human prion diseases. Acta Neuropathol 101:417–423

    PubMed  Google Scholar 

  • Vrotsos EG et al (2009) MCP-1 involvement in glial differentiation of neuroprogenitor cells through APP signaling. Brain Res Bull 79(2):97–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Project Nos. 81200994 and 31172293) and the Basic and Clinical Medical Research Project of Capital Medical University (Project No. 12JL01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Lu or Deming Zhao.

Additional information

Jian Tu and Baian Chen contributed equally to this work.

China Agricultural University and Capital Medical University are cofirst institutions in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J., Chen, B., Yang, L. et al. Amyloid-β Activates Microglia and Regulates Protein Expression in a Manner Similar to Prions. J Mol Neurosci 56, 509–518 (2015). https://doi.org/10.1007/s12031-015-0553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0553-2

Keywords

Navigation