Skip to main content
Log in

Nesfatin-1 Decreases Excitability of Dopaminergic Neurons in the Substantia Nigra

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nesfatin-1, a newly discovered satiety molecule which reduces feeding behavior, has been recognized as a unique regulatory neuropeptide with its multiple roles, both central and peripheral. However, whether it had neuronal modulation effect on dopaminergic neurons is largely unknown. In the present study, using whole-cell patch clamp under current-clamp mode, we investigate the effects of nesfatin-1 on the electrical activity of rat nigral dopaminergic neurons. Nesfatin-1 could produce a resting membrane potential hyperpolarization on the majority of dopaminergic neurons tested. The spike frequency decreased by 23.13 ± 5.93 and 43.20 ± 5.56 % in 5-nM and 10-nM nesfatin-1 groups, respectively. These effects persisted in the presence of ionotropic glutamate and GABA receptor antagonists. Our study suggests that nesfatin-1 postsynaptically inhibits the electrical activity of nigral dopaminergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aydin S, Dag E, Ozkan Y et al (2009) Nesfatin-1 and ghrelin levels in serum and saliva of epileptic patients: hormonal changes can have a major effect on seizure disorders. Mol Cell Biochem 328(1–2):49–56

    Article  CAS  PubMed  Google Scholar 

  • Bishop MW, Chakraborty S, Matthews GA et al (2010) Hyperexcitable substantia nigra dopamine neurons in PINK1- and HtrA2/Omi-deficient mice. J Neurophysiol 104(6):3009–3020

    Article  CAS  PubMed  Google Scholar 

  • Brailoiu GC, Dun SL, Brailoiu E et al (2007) Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 148(10):5088–5094

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Dong J, Jiang ZY (2012) Nesfatin-1 influences the excitability of glucosensing neurons in the hypothalamic nuclei and inhibits the food intake. Regul Pept 177(1–3):21–26

    Article  CAS  PubMed  Google Scholar 

  • Cristina Brailoiu G, Deliu E, Tica AA et al (2013) Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats. J Neurochem 126(6):739–748

    Article  CAS  PubMed  Google Scholar 

  • Fannjiang Y, Kim CH, Huganir RL et al (2003) BAK alters neuronal excitability and can switch from anti- to pro-death function during postnatal development. Dev Cell 4(4):575–585

    Article  CAS  PubMed  Google Scholar 

  • Foo KS, Brauner H, Ostenson CG, Broberger C (2010) Nucleobindin-2/nesfatin in the endocrine pancreas: distribution and relationship to glycaemic state. J Endocrinol 204(3):255–263

    Article  CAS  PubMed  Google Scholar 

  • García-Galiano D, Tena-Sempere M (2013) Emerging roles of NUCB2/nesfatin-1 in the metabolic control of reproduction. Curr Pharm Des. In press.

  • Garcia-Galiano D, Pineda R, Ilhan T et al (2012) Cellular distribution, regulated expression, and functional role of the anorexigenic peptide, NUCB2/nesfatin-1, in the testis. Endocrinology 153(4):1959–1971

    Article  CAS  PubMed  Google Scholar 

  • Ishida E, Hashimoto K, Shimizu H et al (2012) Nesfatin-1 induces the phosphorylation levels of cAMP response element-binding protein for intracellular signaling in a neural cell line. PLoS One 7(12):e50918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang H, Li LJ, Wang J, Xie JX (2008) Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol 212(2):532–537

    Article  CAS  PubMed  Google Scholar 

  • Kotz CM, Wang C, Teske JA et al (2006) Orexin A mediation of time spent moving in rats: neural mechanisms. Neuroscience 142(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Liss B, Bruns R, Roeper J (1999) Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J 18(4):833–846

    Article  CAS  PubMed  Google Scholar 

  • Marinelli M, Rudick CN, Hu XT, White FJ (2006) Excitability of dopamine neurons: modulation and physiological consequences. CNS Neurol Disord Drug Targets 5(1):79–97

    Article  CAS  PubMed  Google Scholar 

  • Merali Z, Cayer C, Kent P, Anisman H (2008) Nesfatin-1 increases anxiety- and fear-related behaviors in the rat. Psychopharmacology (Berl) 201(1):115–123

    Article  CAS  Google Scholar 

  • Mimee A, Smith PM, Ferguson AV (2012) Nesfatin-1 influences the excitability of neurons in the nucleus of the solitary tract and regulates cardiovascular function. Am J Physiol Regul Integr Comp Physiol 302(11):R1297–R1304

    Article  CAS  PubMed  Google Scholar 

  • Noh J, Chang SY, Wang SY, Chung JM (2011) Dual function of Zn2+ on the intrinsic excitability of dopaminergic neurons in rat substantia nigra. Neuroscience 175:85–92

    Article  CAS  PubMed  Google Scholar 

  • Oh IS, Shimizu H, Satoh T et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709–712

    Article  Google Scholar 

  • Ozsavci D, Ersahin M, Sener A et al (2011) The novel function of nesfatin-1 as an anti-inflammatory and antiapoptotic peptide in subarachnoid hemorrhage-induced oxidative brain damage in rats. Neurosurgery 68(6):1699–1708, discussion 1708

    Article  PubMed  Google Scholar 

  • Price CJ, Hoyda TD, Samson WK, Ferguson AV (2008a) Nesfatin-1 influences the excitability of paraventricular nucleus neurones. J Neuroendocrinol 20(2):245–250

    Article  CAS  PubMed  Google Scholar 

  • Price CJ, Samson WK, Ferguson AV (2008b) Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res 1230:99–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prisco S, Natoli S, Bernardi G, Mercuri NB (2002) Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons. Neuropharmacology 42(3):289–296

    Article  CAS  PubMed  Google Scholar 

  • Ramanjaneya M, Chen J, Brown JE et al (2010) Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. Endocrinology 151(7):3169–3180

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Bian X, Qu Z et al (2013) Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels. Nat Commun 4:1435

    Article  PubMed  Google Scholar 

  • Stengel A, Tache Y (2010) Nesfatin-1—role as possible new potent regulator of food intake. Regul Pept 163(1–3):18–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stengel A, Goebel M, Yakubov I et al (2009) Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 150(1):232–238

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30(5):244–250

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium 47(2):175–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS (2012) The anti-inflammatory and anti-apoptotic effects of nesfatin-1 in the traumatic rat brain. Peptides 36(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • Vas S, Adori C, Konczol K et al (2013) Nesfatin-1/NUCB2 as a potential new element of sleep regulation in rats. PLoS One 8(4):e59809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weng Z, Signore AP, Gao Y et al (2007) Leptin protects against 6-hydroxydopamine-induced dopaminergic cell death via mitogen-activated protein kinase signaling. J Biol Chem 282(47):34479–34491

    Article  CAS  PubMed  Google Scholar 

  • Wienecke M, Werth E, Poryazova R et al (2012) Progressive dopamine and hypocretin deficiencies in Parkinson’s disease: is there an impact on sleep and wakefulness? J Sleep Res 21(6):710–717

    Article  PubMed  Google Scholar 

  • Yao LH, Li CH, Yan WW, Huang JN, Liu WX, Xiao P (2011) Cordycepin decreases activity of hippocampal CA1 pyramidal neuron through membrane hyperpolarization. Neurosci Lett 503(3):256–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the 973 Program (2012CB526700, 2011CB504102), National Natural Science Foundation of China (81171207, 31200819), and Ministry of Education of China (20123706120002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jiang.

Additional information

Chen Li and Fang Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Zhang, F., Shi, L. et al. Nesfatin-1 Decreases Excitability of Dopaminergic Neurons in the Substantia Nigra. J Mol Neurosci 52, 419–424 (2014). https://doi.org/10.1007/s12031-013-0169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0169-3

Keywords

Navigation