Skip to main content

Advertisement

Log in

Angioneural Crosstalk in Scaffolds with Oriented Microchannels for Regenerative Spinal Cord Injury Repair

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The aim of our work is to utilize the crosstalk between the vascular and the neuronal system to enhance directed neuritogenesis in uniaxial guidance scaffolds for the repair of spinal cord injury. In this study, we describe a method for angioneural regenerative engineering, i.e., for generating biodegradable scaffolds, produced by a combination of controlled freezing (freeze-casting) and lyophilization, which contain longitudinally oriented channels, and provide uniaxial directionality to support and guide neuritogenesis from neuronal cells in the presence of endothelial cells. The optimized scaffolds, composed of 2.5 % gelatin and 1 % genipin crosslinked, were characterized by an elastic modulus of ~51 kPa and longitudinal channels of ~50 μm diameter. The scaffolds support the growth of endothelial cells, undifferentiated or NGF-differentiated PC12 cells, and primary cultures of fetal chick forebrain neurons. The angioneural crosstalk, as generated by first forming endothelial cell monolayers in the scaffolds followed by injection of neuronal cells, leads to the outgrowth of long aligned neurites in the PC12/endothelial cell co-cultures also in the absence of exogenously added nerve growth factor. Neuritogenesis was not observed in the scaffolds in the absence of the endothelial cells. This methodology is a promising approach for neural tissue engineering and may be applicable for regenerative spinal cord injury repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2-D:

Two dimensional

3-D:

Three dimensional

CFS:

Controlled freeze-dried scaffold

DMEM:

Dubelco's modified eagle medium

EA.hy926:

Hybrid endothelial cell line

ECs:

Endothelial cells

ECM:

Extracellular matrix

EPS:

Endothelial progenitor cells

FBN:

Chicken forebrain primary neurons

FBS:

Fetal bovine serum

GFP-PC12:

Green fluorescence protein transduced PC12 cells

Medium A:

DMEM supplemented with 7.5 % fetal bovine serum FBS 7.5 % horse serum

Medium B:

Dulbecco's modified Eagle's medium supplemented with 10 % FBS

NGF:

Nerve growth factor

PC12:

Pheochromocytoma cells

RFS:

Regular freeze-dried scaffold

SCI:

Spinal cord injury

SEM:

Scanning electron microscope

References

  • Abrams RA, Butler JM, Bodine-Fowler S, Botte MJ (1998) Tensile properties of the neurorrhaphy site in the rat sciatic nerve. J Hand Surg Am 23:465–470

    Article  PubMed  CAS  Google Scholar 

  • Allen JB, Khan S, Lapidos KA, Ameer GA (2010) Toward engineering a human neoendothelium with circulating progenitor cells. Stem Cells 28:318–328

    PubMed  CAS  Google Scholar 

  • Arien-Zakay H, Lecht S, Perets A, Roszell B, Lelkes PI, Lazarovici P (2009) Quantitative assessment of neuronal differentiation in three-dimensional collagen gels using enhanced green fluorescence protein expressing PC12 pheochromocytoma cells. J Mol Neurosci 37:225–237

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, Margolis M, Schreiner C, Edgell CJ, Azizkhan J, Lazarowski E, Juliano RL (1992) In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 153:437–449

    Article  PubMed  CAS  Google Scholar 

  • Bearden SE, Segal SS (2005) Neurovascular alignment in adult mouse skeletal muscles. Microcirculation 12:161–167

    Article  PubMed  Google Scholar 

  • Bigi A, Cojazzi G, Panzavolta S, Roveri N, Rubini K (2002) Stabilization of gelatin films by crosslinking with genipin. Biomaterials 23:4827–4832

    Article  PubMed  CAS  Google Scholar 

  • Bilston LE, Thibault LE (1996) The mechanical properties of the human cervical spinal cord in vitro. Ann Biomed Eng 24:67–74

    Article  PubMed  CAS  Google Scholar 

  • Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, Woeltje M, Tank J, Beckmann C, Fuchs P, Damink LO, Schugner F, Heschel I, Pallua N (2007) In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng 13:2971–2979

    Article  PubMed  CAS  Google Scholar 

  • Bozkurt A, Deumens R, Beckmann C, Olde Damink L, Schugner F, Heschel I, Sellhaus B, Weis J, Jahnen-Dechent W, Brook GA, Pallua N (2009) In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials 30:169–179

    Article  PubMed  CAS  Google Scholar 

  • Bozkurt A, Lassner F, O'Dey D, Deumens R, Bocker A, Schwendt T, Janzen C, Suschek CV, Tolba R, Kobayashi E, Sellhaus B, Tholl S, Eummelen L, Schugner F, Damink LO, Weis J, Brook GA, Pallua N (2012) The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials 33:1363–1375

    Article  PubMed  CAS  Google Scholar 

  • Chang GL, Hung TK, Bleyaert A, Jannetta PJ (1981) Stress–strain measurement of the spinal cord of puppies and their neurological evaluation. J Trauma 21:807–810

    Article  PubMed  CAS  Google Scholar 

  • Danker K, Mechai N, Lucka L, Reutter W, Horstkorte R (2001) The small GTPase Ras is involved in growth factor-regulated expression of the α1 integrin subunit in PC12 cells. Biol Chem 382:969–972

    Article  PubMed  CAS  Google Scholar 

  • Davies SJ, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822

    PubMed  CAS  Google Scholar 

  • Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734–3737

    Article  PubMed  CAS  Google Scholar 

  • Egorov V, Tsyuryupa S, Kanilo S, Kogit M, Sarvazyan A (2008) Soft tissue elastometer. Med Eng Phys 30:206–212

    Article  PubMed  CAS  Google Scholar 

  • Engler AJ, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887

    Article  PubMed  CAS  Google Scholar 

  • Francisco H, Kollins K, Varghis N, Vocadlo D, Vosseller K, Gallo G (2009) O-GLcNAc post-translational modifications regulate the entry of neurons into an axon branching program. Dev Neurobiol 69:162–173

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Lazarovici P, Guroff G (1989) Regulation of the differentiation of PC12 pheochromocytoma cells. Environ Health Perspect 80:127–142

    Article  PubMed  CAS  Google Scholar 

  • Glaser J, Gonzalez R, Sadr E, Keirstead HS (2006) Neutralization of the chemokine CXCL10 reduces apoptosis and increases axon sprouting after spinal cord injury. J Neurosci Res 84:724–734

    Article  PubMed  CAS  Google Scholar 

  • He W, Bellamkonda RV (2005) Nanoscale neuro-integrative coatings for neural implants. Biomaterials 26:2983–2990

    Article  PubMed  CAS  Google Scholar 

  • Heidemann SR, Reynolds M, Ngo K, Lamoureux P (2003) The culture of chick forebrain neurons. Methods Cell Biol 71:51–65

    Article  PubMed  Google Scholar 

  • Hejcl A, Lesny P, Pradny M, Michalek J, Jendelova P, Stulik J, Sykova E (2008) Biocompatible hydrogels in spinal cord injury repair. Physiol Res 57(Suppl 3):S121–132

    PubMed  CAS  Google Scholar 

  • Hu X, Huang J, Ye Z, Xia L, Li M, Lv B, Shen X, Luo Z (2009) A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration. Tissue Eng Part A 15:3297–3308

    Article  PubMed  CAS  Google Scholar 

  • Ichihara K, Taguchi T, Shimada Y, Sakuramoto I, Kawano S, Kawai S (2001) Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J Neurotrauma 18:361–367

    Article  PubMed  CAS  Google Scholar 

  • IJkema-Paassen J, Jansen K, Gramsbergen A, Meek MF (2004) Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials 25:1583–1592

    Article  PubMed  CAS  Google Scholar 

  • Jones SL, Selzer ME, Gallo G (2006) Developmental regulation of sensory axon regeneration in the absence of growth cones. J Neurobiol 66:1630–1645

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, Shibata S, Okano HJ, Ikegami T, Moriya A, Konishi O, Nakayama C, Kumagai K, Kimura T, Sato Y, Goshima Y, Taniguchi M, Ito M, He Z, Toyama Y, Okano H (2006) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12:1380–1389

    Article  PubMed  CAS  Google Scholar 

  • Karkkainen V, Louhivuori V, Castren ML, Akerman KE (2009) Neurotransmitter responsiveness during early maturation of neural progenitor cells. Differentiation 77:188–198

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Li Q, Hempstead BL, Madri JA (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546

    Article  PubMed  CAS  Google Scholar 

  • Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR Jr, Ehman RL (2008) Magnetic resonance elastography of the brain. NeuroImage 39:231–237

    Article  PubMed  Google Scholar 

  • Kruyt MC, De Bruijn J, Veenhof M, Oner FC, Van Blitterswijk CA, Verbout AJ, Dhert WJ (2003) Application and limitations of chloromethyl-benzamidodialkylcarbocyanine for tracing cells used in bone tissue engineering. Tissue Eng 9:105–115

    Article  PubMed  CAS  Google Scholar 

  • Lazarovici P, Marcinkiewicz C, Lelkes PI (2006) Cross talk between the cardiovascular and nervous systems: neurotrophic effects of vascular endothelial growth factor (VEGF) and angiogenic effects of nerve growth factor (NGF)—implications in drug development. Curr Pharm Des 12:2609–2622

    Article  PubMed  CAS  Google Scholar 

  • Lecht S, Foerster C, Arien-Zakay H, Marcinkiewicz C, Lazarovici P, Lelkes PI (2010a) Cardiac microvascular endothelial cells express and release nerve growth factor but not fibroblast growth factor-2. In Vitro Cell Dev Biol Anim 46:469–76

    Article  PubMed  CAS  Google Scholar 

  • Lecht S, Arien-Zakay H, Wagenstein Y, Inoue S, Marcinkiewicz C, Lelkes PI, Lazarovici P (2010b) Transient signaling of Erk1/2, Akt and PLCgamma induced by nerve growth factor in brain capillary endothelial cells. Vascul Pharmacol 53:107–114

    Article  PubMed  CAS  Google Scholar 

  • Lee P, Lee J, Choi SY, Lee SE, Lee S, Son D (2006) Geniposide from Gardenia jasminoides attenuates neuronal cell death in oxygen and glucose deprivation-exposed rat hippocampal slice culture. Biol Pharm Bull 29:174–176

    Article  PubMed  CAS  Google Scholar 

  • Lelkes PI, Friedman JE, Rosenheck K, Oplatka A (1986) Destabilization of actin filaments as a requirement for the secretion of catecholamines from permeabilized chromaffin cells. FEBS Lett 208:357–363

    Article  PubMed  CAS  Google Scholar 

  • Lelkes PI, Ramos E, Nikolaychik VV, Wankowski DM, Unsworth BR, Goodwin TJ (1997) GTSF-2: a new, versatile cell culture medium for diverse normal and transformed mammalian cells. In Vitro Cell Dev Biol Anim 33:344–351

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zheng X, Yin F, Hu Y, Guo L, Deng X, Chen G, Jiajia J, Zhang H (2006) Neurotrophic property of geniposide for inducing the neuronal differentiation of PC12 cells. Int J Dev Neurosci 24:419–424

    Article  PubMed  CAS  Google Scholar 

  • Madaghiele M, Sannino A, Yannas IV, Spector M (2008) Collagen-based matrices with axially oriented pores. J Biomed Mater Res A 85:757–767

    PubMed  Google Scholar 

  • Mazsuchowski EL, Thibault LE (2003) Biomechanical properties of the human spinal cord and pia mater. Summer Bioengineering Conference Key Biscayne, FL, 1205

  • Mollers S, Heschel I, Damink LH, Schugner F, Deumens R, Muller B, Bozkurt A, Nava JG, Noth J, Brook GA (2009) Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Eng Part A 15:461–472

    Article  PubMed  Google Scholar 

  • Mondrinos MJ, Koutzaki S, Jiwanmall E, Li M, Dechadarevian JP, Lelkes PI, Finck CM (2006) Engineering three-dimensional pulmonary tissue constructs. Tissue Eng 12:717–728

    Article  PubMed  CAS  Google Scholar 

  • Moore K, MacSween M, Shoichet M (2006) Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng 12:267–278

    Article  PubMed  CAS  Google Scholar 

  • Neufeld G, Sabag AD, Rabinovicz N, Kessler O (2012) Semaphorins in angiogenesis and tumor progression. Cold Spring Harb Perspect Med 2, in press

  • Nikolaychik VV, Samet MM, Lelkes PI (1996) A new method for continual quantitation of viable cells on endothelialized polyurethanes. J Biomater Sci Polym Ed 7:881–891

    Article  PubMed  CAS  Google Scholar 

  • Nomura H, Tator CH, Shoichet MS (2006) Bioengineered strategies for spinal cord repair. J Neurotrauma 23:496–507

    Article  PubMed  Google Scholar 

  • Ozawa H, Matsumoto T, Ohashi T, Sato M, Kokubun S (2001) Comparison of spinal cord gray matter and white matter softness: measurement by pipette aspiration method. J Neurosurg 95:221–224

    PubMed  CAS  Google Scholar 

  • Patrick JCW, Mikos AG, McIntire L, Langer RS (1998) Frontiers in tissue engineering, 1st edn. Pergamon Press, New York

    Google Scholar 

  • Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65:489–497

    Article  PubMed  Google Scholar 

  • Rauch MF, Hynes SR, Bertram J, Redmond A, Robinson R, Williams C, Xu H, Madri JA, Lavik EB (2009) Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier. Eur J Neurosci 29:132–145

    Article  PubMed  Google Scholar 

  • Rydevik BL, Kwan MK, Myers RR, Brown RA, Triggs KJ, Woo SL, Garfin SR (1990) An in vitro mechanical and histological study of acute stretching on rabbit tibial nerve. J Orthop Res 8:694–701

    Article  PubMed  CAS  Google Scholar 

  • Schweigerer L, Neufeld G, Friedman J, Abraham JA, Fiddes JC, Gospodarowicz D (1987) Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 325:257–259

    Article  PubMed  CAS  Google Scholar 

  • Scott R, Marquardt L, Willits RK (2010) Characterization of poly(ethylene glycol) gels with added collagen for neural tissue engineering. J Biomed Mater Res A 93:817–823

    PubMed  Google Scholar 

  • Shimazaki T, Shingo T, Weiss S (2001) The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J Neurosci 21:7642–7653

    PubMed  CAS  Google Scholar 

  • Smith GM, Onifer SM (2011) Construction of pathways to promote axon growth within the adult central nervous system. Brain Res Bull 84:300–305

    Article  PubMed  Google Scholar 

  • Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI (2009) Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng 102:632–643

    Article  PubMed  CAS  Google Scholar 

  • Thomson RC, Shung AK, Yaszemski MJ, Mikos AG (2000) Polymer scaffold processing. In: Lanza RP, Langer R, Vacanti JP (eds) Principles of tissue engineering, 2nd edn. Academic, San Diego, pp 251–262

    Chapter  Google Scholar 

  • Wegst UG, Schecter M, Donius AE, Hunger PM (2010) Biomaterials by freeze casting. Philos Transact A Math Phys Eng Sci 368:2099–2121

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J (2010) Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 6:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA 76:4498–4502

    Article  PubMed  CAS  Google Scholar 

  • Zacchigna S, Lambrechts D, Carmeliet P (2008) Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci 9:169–181

    Article  PubMed  CAS  Google Scholar 

  • Zhang YG, Huang JH, Hu XY, Sheng QS, Zhao W, Luo ZJ (2011) Omentum-wrapped scaffold with longitudinally oriented micro-channels promotes axonal regeneration and motor functional recovery in rats. PLoS One 6(12):e29184

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants (to PIL) from the Craig H. Neilson Foundation, the Louis and Bessie Stein Foundation (to PIL and PL), and Israel Ministry of Science and Technology (PL). PL holds the Jacob Gitlin Chair in Physiology and is affiliated with and supported by the David R. Bloom Center for Pharmacy and the Dr. Adolf and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics at the Hebrew University of Jerusalem, Israel. We would like to thank Dr. Cora Edgell for her generous gift of the EA.hy926 cells, Dr. Ulrike G.K. Wegst and her team at the Department of Materials Sciences, Drexel University for introducing us to the controlled freezing technique, Dr. J. Yasha Kresh (Department of Cariothoracic Surgery, Drexel University College of Medicine) for the use of the rheometer, and Dr. Gianluca Gallo (Department of Anatomy and Neurobiology, Drexel University College of Medicine) for teaching us how to isolate embryonic chick forebrain neurons. We are grateful to Dr. Qingwei Zhang and Ms. Gozde Senel, Drexel University, School of Biomedical Engineering, Science and Health Systems for their assistance with the SEM. We also would like to thank Ms. Pimchanok Pimton, Ms. Tantri Syawalwulanti, and Ms. Zehava Cohen for their help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philip Lazarovici or Peter I. Lelkes.

Additional information

Aybike Saglam and Anat Perets contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saglam, A., Perets, A., Canver, A.C. et al. Angioneural Crosstalk in Scaffolds with Oriented Microchannels for Regenerative Spinal Cord Injury Repair. J Mol Neurosci 49, 334–346 (2013). https://doi.org/10.1007/s12031-012-9863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9863-9

Keywords

Navigation