Skip to main content

Advertisement

Log in

Changes in PACAP Immunoreactivity in Human Milk and Presence of PAC1 Receptor in Mammary Gland during Lactation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread occurrence in the nervous system and peripheral organs, including the mammary gland. Previously, we have shown that PACAP38 is present in the human milk at higher levels than in respective blood samples. However, it is not known how PACAP levels and the expression of PAC1 receptor change during lactation. Therefore, the aim of our study was to investigate PACAP38-like immunoreactivity (PACAP38-LI) in human colostrums and transitional and mature milk during lactation and to compare the expression of PAC1 receptors in lactating and non-lactating mammary glands. We found that PACAP38-LI was significantly higher in human colostrum samples than in the transitional and mature milk. PACAP38-LI did not show any significant changes within the first 10-month period of lactation, but a significant increase was observed thereafter, up to the examined 17th month. Weak expression of PAC1 receptors was detected in non-lactating sheep and human mammary glands, but a significant increase was observed in the lactating sheep samples. In summary, the present study is the first to show changes of PACAP levels in human milk during lactation. The presence of PACAP in the milk suggests a potential role in the development of newborn, while the increased expressions of PAC1 receptors on lactating breast may indicate a PACAP38/PAC1 interaction in the mammary gland during lactation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson ST, Sawangjaroen K, Curlewis JD (1996) Pituitary adenylate cyclase-activating polypeptide acts within the medial basal hypothalamus to inhibit prolactin and luteinizing hormone secretion. Endocrinology 137:3424–3429

    Article  PubMed  CAS  Google Scholar 

  • Arbogast LA, Voogt JL (1994) Pituitary adenylate cyclase-activating polypeptide (PACAP) increases prolactin release and tuberoinfundibular dopaminergic neuronal activity. Brain Res 655:17–24

    Article  PubMed  CAS  Google Scholar 

  • Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129:2787–2789

    Article  PubMed  CAS  Google Scholar 

  • Aydin S, Aydin S, Ozkan Y, Kumru S (2006) Ghrelin is present in human colostrums, transitional and mature milk. Peptides 27:878–882

    Article  PubMed  CAS  Google Scholar 

  • Baintner K (2007) Transmission of antibodies from mother to young: evolutionary strategies in a proteolytic environment. Vet Immunol Immunopathol 117:153–161

    Article  PubMed  CAS  Google Scholar 

  • Borzsei R, Mark L, Tamas A et al (2009) Presence of pituitary adenylate cyclase activating polypeptide-38 in human plasma and milk. Eur J Endocrinol 160:561–565

    Article  PubMed  CAS  Google Scholar 

  • Bourgault S, Chatenet D, Wurtz O et al (2011) Strategies to convert PACAP from a hypophysiotropic neurohormone into a neuroprotective drug. Curr Pharm Des 17:1002–1024

    Article  PubMed  CAS  Google Scholar 

  • Brubel R, Reglodi D, Jambor E et al (2011) Investigation of pituitary adenylate cyclase activating polypeptide in human gynecological and other biological fluids by using MALDI TOF mass spectrometry. J Mass Spectrom 46:189–194

    Article  PubMed  CAS  Google Scholar 

  • Catinella S, Traldi P, Pinelli C, Dallaturca E, Marsilio R (1996) Matrix-assisted laser desorption/ionization mass spectrometry in milk science. Rapid Commun Mass Spectrom 10:1629–1637

    Article  PubMed  CAS  Google Scholar 

  • Chiodera P, Volpi R, Capretti L, Coiro V (1995) Effects of intravenously infused pituitary adenylate cyclase-activating polypeptide on arginine vasopressin and oxytocin secretion in man. Neuroreport 6:1490–1492

    Article  PubMed  CAS  Google Scholar 

  • Chiodera P, Volpi R, Capretti L, Caffarri G, Magotti MG, Coiro V (1996) Effects of intravenously infused pituitary adenylate cyclase-activating polypeptide on adenohypophyseal hormone secretion in normal men. Neuroendocrinology 64:242–246

    Article  PubMed  CAS  Google Scholar 

  • Chowanadisai W, Lonnerdal B (2002) Alpha(1)-antitrypsin and antichymotrypsin in human milk: origin, concentrations, and stability. Am J Clin Nutr 76:828–833

    PubMed  CAS  Google Scholar 

  • Cohick WS (1998) Role of the insulin-like growth factors and their binding proteins in lactation. J Dairy Sci 81:1769–1777

    Article  PubMed  CAS  Google Scholar 

  • Czegledi L, Tamas A, Borzsei R et al (2011) Presence of pituitary adenylate cyclase-activating polypeptide (PACAP) in the plasma and milk of ruminant animals. Gen Comp Endocrinol 172:115–119

    Article  PubMed  CAS  Google Scholar 

  • Eilers E, Ziska T, Harder T, Plagemann A, Obladen M, Loui A (2011) Leptin determination in colostrum and early human milk from mothers of preterm and term infants. Early Hum Dev 87:415–419

    Article  PubMed  CAS  Google Scholar 

  • Falluel-Morel A, Aubert N, Vaudry D et al (2008) Interactions of PACAP and ceramides in the control of granule cell apoptosis during cerebellar development. J Mol Neurosci 36:8–15

    Article  PubMed  CAS  Google Scholar 

  • Ganea D, Delgado M (2003) The neuropeptides VIP/PACAP and T cells: inhibitors or activators? Curr Pharm Des 9:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez MO, Bodega G, Ruiz-Villaespesa A, Cortes J, Prieto JC, Carmena MJ (2004) PACAP expression and distribution in human breast cancer and healthy tissue. Cancer Lett 205:189–195

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez MO, Collado B, Bodega G et al (2005) Pituitary adenylate cyclase-activating peptide/vasoactive intestinal peptide receptors in human normal mammary gland and breast cancer tissue. Gynecol Endocrinol 20:327–333

    Article  PubMed  CAS  Google Scholar 

  • Grosvernor CE, Picciano MF, Baumrucker CR (1992) Hormones and growth factors in milk. Endocr Rev 14:710–728

    Google Scholar 

  • Hartmann PE, Kulski JK (1978) Changes in the composition of the mammary secretion of women after abrupt termination of breast feeding. J Physiol 275:1–11

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Shintani N, Tanida M, Hayata A, Hashimoto R, Baba A (2011) PACAP is implicated in the stress axes. Curr Pharm Des 17:985–989

    Article  PubMed  CAS  Google Scholar 

  • Helyes Zs, Pozsgai G, Borzsei R et al (2007) Inhibitory effect of PACAP38 on acute neurogenic and non-neurogenic inflammation in the rat. Peptides 28:1847–1855

    Article  PubMed  CAS  Google Scholar 

  • Huang SK, Pan JT (1996) Stimulatory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide on tuberoinfundibular dopaminergic neuron activity in estrogen-treated ovariectomized rats and their correlation with prolactin secretion. Neuroendocrinology 64:208–214

    Article  PubMed  CAS  Google Scholar 

  • Jarmołowska B, Sidor K, Iwan M et al (2007) Changes of beta-casomorphin content in human milk during lactation. Peptides 28:1982–1986

    Article  PubMed  Google Scholar 

  • Kelly GS (2003) Bovine colostrums: a review of clinical uses. Altern Med Rev 8:378–994

    PubMed  Google Scholar 

  • Knobil E, Neill JD (1998) Encyclopedia of reproduction. Academic, London

    Google Scholar 

  • Koppan M, Varnagy A, Reglodi D et al (2012) Correlation between oocyte number and follicular fluid concentration of pituitary adenylate cyclase activating polypeptide (PACAP) in women after superovulation treatment. J Mol Neurosci. doi:10.1007/s12031-012-9743-3

  • Leyton J, Gozes Y, Pisegna J et al (1999) PACAP(6–38) is a PACAP receptor antagonist for breast cancer cells. Breast Cancer Res Treat 56:177–186

    Article  PubMed  CAS  Google Scholar 

  • Lonnerdal B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77:1537S–1543S

    PubMed  Google Scholar 

  • Lu M, Yao F, Guo A (1995) A study on two gut hormones in breast milk. Zhonghua Fu Chan Ke Za Zhi 30:554–556

    PubMed  CAS  Google Scholar 

  • McFarland-Mancini M, Hugo E, Loftus J, Ben-Jonathan N (2006) Induction of prolactin expression and release in human preadipocytes by cAMP activating ligands. Biochem Biophys Res Commun 344:9–16

    Article  PubMed  CAS  Google Scholar 

  • Moody TW, Gozes I (2007) Vasoactive intestinal peptide receptors: a molecular target in breast and lung cancer. Curr Pharm Des 13:1099–1104

    Article  PubMed  CAS  Google Scholar 

  • Moody TW, Leyton J, Gozes I, Lang L, Eckelman WC (1998) VIP and breast cancer. Ann N Y Acad Sci 865:290–296

    Article  PubMed  CAS  Google Scholar 

  • Moody TW, Leyton J, Chan D et al (2001) VIP receptor antagonists and chemotherapeutic drugs inhibit the growth of breast cancer cells. Breast Cancer Res Treat 68:55–64

    Article  PubMed  CAS  Google Scholar 

  • Nemeth J, Reglodi D, Pozsgai G et al (2006) Effect of PACAP-38 on sensory neuropeptide release and neurogenic inflammation in rats and mice. Neuroscience 143:223–230

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, Gyarmati J, Ertl T et al (2010) Alterations of pituitary adenylate cyclase-activating polypeptide-like immunoreactivity in the human plasma during pregnancy and after birth. J Endocrinol Invest 33:443–445

    PubMed  CAS  Google Scholar 

  • Reglodi D, Kiss P, Lubics A, Tamas A (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 17:962–972

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Laderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA (2000) Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res 60:3105–3112

    PubMed  CAS  Google Scholar 

  • Sakurai Y, Shintani N, Hayata A, Hashimoto H, Baba A (2011) Trophic effects of PACAP on pancreatic islets: a mini-review. J Mol Neurosci 43:3–7

    Article  PubMed  CAS  Google Scholar 

  • Sawangjaroen K, Curlewis JD (1994) Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) on prolactin, luteinizing hormone and growth hormone secretion in the ewe. J Neuroendocrinol 6:549–555

    Article  PubMed  CAS  Google Scholar 

  • Seaborn T, Masmoudi-Kouli O, Fournier A, Vaudry H, Vaudry D (2011) Protective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against apoptosis. Curr Pharm Des 17:204–214

    Article  PubMed  CAS  Google Scholar 

  • Skakkebaek M, Hannibal J, Fahrenkrug J (1999) Pituitary adenylate cyclase activating polypeptide (PACAP) in the rat mammary gland. Cell Tissue Res 298:153–159

    Article  PubMed  CAS  Google Scholar 

  • Somogyvari-Vigh A, Reglodi D (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr Pharm Des 10:2861–2889

    Article  PubMed  CAS  Google Scholar 

  • Svennersten-Sjaunja K, Olsson K (2005) Endocrinology of milk production. Domest Anim Endocrinol 29:241–258

    Article  PubMed  CAS  Google Scholar 

  • Tohei A, Matsuzaki M, Kogo H (2001) Antagonist of pituitary adenylate cyclase activating polypeptide suppresses prolactin secretion without changing the activity of dopamine neurons in lactating rats. Neuroendocrinology 73:68–74

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  PubMed  CAS  Google Scholar 

  • Weaver LT (1992) Breast and gut: the relationship between lactating mammary function and neonatal gastrointestinal function. Proc Nutr Soc 51:155–163

    Article  PubMed  CAS  Google Scholar 

  • Werner H, Koch Y, Fridkin M, Fahrenkrug J, Gozes I (1985) High levels of vasoactive intestinal peptide in human milk. Biochem Biophys Res Commun 133:228–232

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka Y, Kudo S, Nishimura H et al (2005) Oral administration of bovine colostrum stimulates intestinal intraepithelial lymphocytes to polarize Th1-type in mice. Int Immunopharmacol 5:581–590

    Article  PubMed  CAS  Google Scholar 

  • Zia H, Hida T, Jakowlew S et al (1996) Breast cancer growth is inhibited by vasoactive intestinal peptide (VIP) hybrid, a synthetic VIP receptor antagonist. Cancer Res 56:3486–3489

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the following grants: OTKA (K72592, 73044, and CNK78480), TAMOP (4.2.1.B-10/2/KONV-2010-002, 4.2.2.B-10/1-2010-0029, and 4.2.1/B-09/1/KONV-2010-0007), Bolyai Scholarship, Richter Foundation, PTE AOK Research Grant KA-34039/10-26, KA-34039/10-10, PTE-MTA “Lendulet,” and the European Social Fund. The authors thank Dora Heronyanyi, Zsofia Bilonka and Gabriella Veghi for their assistance in collecting milk samples, Erika Csanadi and Mrs. Magdolna Ispanne Muth for collecting colostrum samples and Terez Bagoly for the assistance of RIA measurements. The authors also thank the help of Pecs TV and all the volunteers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tamas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csanaky, K., Banki, E., Szabadfi, K. et al. Changes in PACAP Immunoreactivity in Human Milk and Presence of PAC1 Receptor in Mammary Gland during Lactation. J Mol Neurosci 48, 631–637 (2012). https://doi.org/10.1007/s12031-012-9779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9779-4

Keywords

Navigation