Skip to main content

Advertisement

Log in

Current Concepts in Early Mobilization of Critically Ill Patients Within the Context of Neurologic Pathology

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Neurocritical patients (NCPs) in the intensive care unit (ICU) rapidly progress to respiratory and peripheral muscle dysfunctions, which significantly impact morbidity and death. Early mobilization in NCPs to decrease the incidence of ICU–acquired weakness has been showing rapid growth, although pertinent literature is still scarce. With this review, we summarize and discuss current concepts in early mobilization of critically ill patients within the context of neurologic pathology in NCPs. A narrative synthesis of literature was undertaken trying to answer the following questions: How do the respiratory and musculoskeletal systems in NCPs behave? Which metabolic biomarkers influence physiological responses in NCPs? Which considerations should be taken when prescribing exercises in neurocritically ill patients? The present review detected safety, feasibility, and beneficial response for early mobilization in NCPs, given successes in other critically ill populations and many smaller intervention trials in neurocritical care. However, precautions should be taken to elect the patient for early care, as well as monitoring signs that indicate interruption for intervention, as worse outcomes were associated with very early mobilization in acute stroke trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Borsellino B, Schultz MJ, Gama de Abreu M, Robba C, Bilotta F. Mechanical ventilation in neurocritical care patients: a systematic literature review. Exp Rev Respir Med. 2016;10(10):1123–32. https://doi.org/10.1080/17476348.2017.1235976.

    Article  CAS  Google Scholar 

  2. Engels PT, Beckett AN, Rubenfeld GD, Kreder H, Finkelstein JA, da Costa L, Papia G, Rizoli SB, Tien HC. Physical rehabilitation of the critically ill trauma patient in the ICU. Crit Care Med. 2013;41(7):1790–801.

    Article  PubMed  Google Scholar 

  3. Lee K, Rincon F. Pulmonary complications in patients with severe brain injury. Crit Care Res Pract. 2012;2012: 207247. https://doi.org/10.1155/2012/207247.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hashem DM, Nelliot A, Needham DM. Early mobilization and rehabilitation in the ICU: moving Back to the future. Respir Care. 2016;61(7):971–9. https://doi.org/10.4187/respcare.04741. (Epub 2016 Apr 19 PMID: 27094396).

    Article  PubMed  Google Scholar 

  5. Zhang L, Hu W, Cai Z, Liu J, Wu J, Deng Y, Yu K, Chen X, Zhu L, Ma J, Qin Y. Early mobilization of critically ill patients in the intensive care unit: a systematic review and meta-analysis. PLoS ONE. 2019;14(10): e0223185. https://doi.org/10.1371/journal.pone.0223185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arias-Fernández P, Romero-Martin M, Gómez-Salgado J, Fernández-García D. Rehabilitation and early mobilization in the critical patient: systematic review. J Phys Ther Sci. 2018;30(9):1193–201. https://doi.org/10.1589/jpts.30.1193.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Newman ANL, Gravesande J, Rotella S, Wu SS, Topp-Nguyen N, Kho ME, Harris JE, Fox-Robichaud A, Solomon P. Physiotherapy in the neurotrauma intensive care unit: a scoping review. J Crit Care. 2018;48:390–406. https://doi.org/10.1016/j.jcrc.2018.09.037.

    Article  PubMed  Google Scholar 

  8. Miranda FEMH, Dias BCA, Macedo LB, Dias CMCC. Eletroestimulação em doentes críticos: uma revisão sistemática. Rev Pesq Fisiot. 2013;3(1):79–91. https://doi.org/10.17267/2238-2704rpf.v3i1.111.

    Article  Google Scholar 

  9. Seder DB, Bösel J. Airway management and mechanical ventilation in acute brain injury. Handb Clin Neurol. 2017;140:15–32. https://doi.org/10.1016/B978-0-444-63600-3.00002-7.

    Article  CAS  PubMed  Google Scholar 

  10. Hannawi Y, Hannawi B, Rao CP, Suarez JI, Bershad EM. Stroke-associated pneumonia: major advances and obstacles. Cerebrovasc Dis. 2013;35(5):430–43. https://doi.org/10.1159/000350199.

    Article  CAS  PubMed  Google Scholar 

  11. Wen J, Chen J, Chang J, Wei J. Pulmonary complications and respiratory management in neurocritical care: a narrative review. Chin Med J (Engl). 2022;135(7):779–89. https://doi.org/10.1097/CM9.0000000000001930.PMID:35671179;PMCID:PMC9276382.

    Article  PubMed  Google Scholar 

  12. Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L. The sick and the weak: neuropathies/myopathies in the critically Ill. Physiol Rev. 2015;95(3):1025–109. https://doi.org/10.1152/physrev.00028.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020;46(4):637–53. https://doi.org/10.1007/s00134-020-05944-4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Truong AD, Kho ME, Brower RG, Feldman DR, Colantuoni E, Needham DM. Effects of neuromuscular electrical stimulation on cytokines in peripheral blood for healthy participants: a prospective, single-blinded Study. Clin Physiol Funct Imaging. 2017;37(3):255–62. https://doi.org/10.1111/cpf.12290.

    Article  CAS  PubMed  Google Scholar 

  15. Deluzio S, Vora I, Kumble S, Zink EK, Stevens RD, Bahouth MN. Feasibility of early, motor-assisted cycle ergometry in critically ill neurological patients with upper limb weakness and variable cognitive status: a case series. Am J Phys Med Rehabil. 2018;97(5):e37–41. https://doi.org/10.1097/PHM.0000000000000857. (PMID: 29095167).

    Article  PubMed  Google Scholar 

  16. Mendez-Tellez PA, Nusr R, Feldman D, Needham DM. Early physical rehabilitation in the ICU: a review for the neurohospitalist. Neurohospitalist. 2012;2(3):96–105. https://doi.org/10.1177/1941874412447631.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bolton CF, Gilbert JJ, Hahn AF, Sibbald WJ. Polyneuropathy in critically ill patients. J Neurol Neurosurg Psychiatry. 1984;47(11):1223–31. https://doi.org/10.1136/jnnp.47.11.1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barbosa KBF, Costa NMB, Alfenas RCG, De Paula SO, Minim VPR, Bressan J. Oxidative stress: concept, implications and modulating factors. Rev Nutr. 2010;23(4):629–43. https://doi.org/10.1590/S1415-52732010000400013.

    Article  CAS  Google Scholar 

  19. De Jonghe B, Shashar T, Lefaucheur JP, et al. Presis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–67.

    Article  PubMed  Google Scholar 

  20. Castro-Avila AC, Serón P, Fan E, Gaete M, Mickan S. Effect of early rehabilitation during intensive care unit stay on functional status: systematic review and meta-analysis. PLoS ONE. 2015;10:0130722.

    Article  Google Scholar 

  21. Klein K, Mulkey M, Bena JF, Albert NM. Clinical and psychological effects of early mobilization in patients treated in a neurologic ICU: a comparative study. Crit Care Med. 2015;43(4):865–73. https://doi.org/10.1097/CCM.0000000000000787. (PMID: 25517476).

    Article  PubMed  Google Scholar 

  22. Oliveira MC, Schoffen JPF. Oxidative stress action in cellular aging. Braz Arch Biol Technol. 2010;53(6):1333–42. https://doi.org/10.1590/S1516-89132010000600009.

    Article  CAS  Google Scholar 

  23. Ferrari CK. Functional foods, herbs and nutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology. 2004;5(5):275–89. https://doi.org/10.1007/s10522-004-2566-z.

    Article  CAS  PubMed  Google Scholar 

  24. Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: a review. Eur J Med Chem. 2019;15(178):687–704. https://doi.org/10.1016/j.ejmech.2019.06.010.

    Article  CAS  Google Scholar 

  25. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76. https://doi.org/10.1152/physrev.00031.2007.

    Article  CAS  PubMed  Google Scholar 

  26. Brito AF, Oliveira CVC, Cardoso GA, Lucena JMS, Sousa JPS, Souza AA. Oxidative stress and vascular diseases: effect of physical exercise. Free Radical Antioxidants Disease. 2018. https://doi.org/10.5772/intechopen.76576.

    Article  Google Scholar 

  27. Fraser DD, Morrison G. Brain oxidative stress after traumatic brain injury cool it? Crit Care Med. 2009;37(2):787–8. https://doi.org/10.1097/CCM.0b013e318194be10.

    Article  PubMed  Google Scholar 

  28. Bayir H, Marion DW, Puccio AM, Wisniewski SR, Janesko KL, Clark RS, Kochanek PM. Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients. J Neurotrauma. 2004;21(1):1–8. https://doi.org/10.1089/089771504772695896.

    Article  PubMed  Google Scholar 

  29. Toklu HZ, Tümer N. Oxidative stress, brain edema, blood–brain barrier permeability, and autonomic dysfunction from traumatic brain injury. In: Kobeissy FH, editor. Brain neurotrauma: Molecular, neuropsychological, and rehabilitation aspects. Boca Raton, FL: CRC Press; 2015.

    Google Scholar 

  30. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142. https://doi.org/10.1186/s12974-019-1516-2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sulhan S, Lyon KA, Shapiro LA, Huang JH. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: pathophysiology and potential therapeutic targets. J Neurosci Res. 2020;98(1):19–28. https://doi.org/10.1002/jnr.24331.

    Article  CAS  PubMed  Google Scholar 

  32. Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020;21(18):6454. https://doi.org/10.3390/ijms21186454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. França EE, Ribeiro LC, Lamenha GG, Magalhães IK, Figueiredo TG, Costa MJ, Elihimas UF Jr, Feitosa BL, Andrade MD, Correia MA Jr, Ramos FF, Castro CM. Oxidative stress and immune system analysis after cycle ergometer use in critical patients. Clinics Sao Paulo. 2017;72(3):143–9. https://doi.org/10.6061/clinics/2017(03)03.

    Article  PubMed  PubMed Central  Google Scholar 

  34. França EET, Gomes JPV, De Lira JMB, Amaral TCN, Vilaça AF, Paiva Júnior MDS, Elihimas Júnior UF, Correia Júnior MAV, Forgiarini Júnior LA, Costa MJC, Andrade MA, Ribeiro LC, De Castro CMMB. Acute effect of passive cycle-ergometry and functional electrical stimulation on nitrosative stress and inflammatory cytokines in mechanically ventilated critically ill patients: a randomized controlled trial. Braz J Med Biol Res. 2020;53(4): e8770. https://doi.org/10.1590/1414-431X20208770.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Azevedo PMDS, Gomes BP. Effects of early mobilisation in the functional rehabilitation of critically ill patients: a systematic review. J Nurs Refer. 2015;4(5):129–38. https://doi.org/10.12707/RIV14035.

    Article  Google Scholar 

  36. Morris PE, Griffin L, Berry M, Thompson C, Hite RD, Winkelman C, Hopkins RO, Ross A, Dixon L, Leach S, Haponik E. Receiving early mobility during an intensive care unit admission is a predictor of improved outcomes in acute respiratory failure. Am J Med Sci. 2011;341(5):373–7. https://doi.org/10.1097/MAJ.0b013e31820ab4f6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dantas CM, Silva PF, Siqueira FH, Pinto RM, Matias S, Maciel C, Oliveira MC, Albuquerque CG, Andrade FM, Ramos FF, França EE. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012;24(2):173–8.

    Article  PubMed  Google Scholar 

  38. TEAM Study Investigators and the ANZICS Clinical Trials Group; Hodgson CL, Bailey M, Bellomo R, Brickell K, Broadley T, Buhr H, Gabbe BJ, Gould DW, Harrold M, Higgins AM, Hurford S, Iwashyna TJ, Serpa Neto A, Nichol AD, Presneill JJ, Schaller SJ, Sivasuthan J, Tipping CJ, Webb S, Young PJ. Early Active Mobilization during Mechanical Ventilation in the ICU. N Engl J Med. 2022;387(19):1747–1758. https://doi.org/10.1056/NEJMoa2209083.

  39. Doiron KA, Hoffmann TC, Beller EM. Early intervention mobilization or active exercise for critically ill adults in the intensive care unit. Cochrane Database Syst Rev. 2018;3(3):CD010754. https://doi.org/10.1002/14651858.CD010754.pub2.

    Article  PubMed  Google Scholar 

  40. Olkowski BF, Shah SO. Early mobilization in the neuro-ICU: how far can we go? Neurocrit Care. 2017;27(1):141–50. https://doi.org/10.1007/s12028-016-0338-7.

    Article  CAS  PubMed  Google Scholar 

  41. Bahouth MN, Power MC, Zink EK, Kozeniewski K, Kumble S, Deluzio S, Urrutia VC, Stevens RD. Safety and feasibility of a neuroscience critical care program to mobilize patients with primary intracerebral hemorrhage. Arch Phys Med Rehabil. 2018;99(6):1220–5. https://doi.org/10.1016/j.apmr.2018.01.034.

    Article  PubMed  Google Scholar 

  42. Titsworth WL, Hester J, Correia T, Reed R, Guin P, Archibald L, Layon AJ, Mocco J. The effect of increased mobility on morbidity in the neurointensive care unit. J Neurosurg. 2012;116(6):1379–88. https://doi.org/10.3171/2012.2.JNS111881. (Epub 2012 Mar 30 PMID: 22462507).

    Article  PubMed  Google Scholar 

  43. Zink EK, Kumble S, Beier M, George P, Stevens RD, Bahouth MN. Physiological responses to in-bed cycle ergometry treatment in Intensive Care Unit patients with external ventricular drainage. Neurocrit Care. 2021;35(3):707–13. https://doi.org/10.1007/s12028-021-01204-5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Machado ADS, Pires-Neto RC, Carvalho MTX, Soares JC, Cardoso DM, Albuquerque IM. Effects of passive cycling exercise on muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients: a randomized clinical trial. J Bras Pneumol. 2017;43(2):134–9. https://doi.org/10.1590/S1806-37562016000000170.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Woo K, Kim J, Kim HB, Choi H, Kim K, Lee D, Na S. The effect of electrical muscle stimulation and in-bed cycling on muscle strength and mass of mechanically ventilated patients: a pilot study. Acute Crit Care. 2018;33(1):16–22. https://doi.org/10.4266/acc.2017.00542.

    Article  PubMed  Google Scholar 

  46. Yu L, Jiang JX, Zhang Y, Chen YZ, Shi Y. Use of in-bed cycling combined with passive joint activity in acute respiratory failure patients receiving mechanical ventilation. Ann Palliat Med. 2020;9(2):175–81. https://doi.org/10.21037/apm.2020.02.1247.

    Article  PubMed  Google Scholar 

  47. Thelandersson A, Nellgård B, Ricksten SE, Cider Å. Effects of early bedside cycle exercise on intracranial pressure and systemic hemodynamics in critically Ill patients in a neurointensive care unit. Neurocrit Care. 2016;25(3):434–9. https://doi.org/10.1007/s12028-016-0278-2.

    Article  PubMed  Google Scholar 

  48. da Rosa Pinheiro DR, Cabeleira MEP, da Campo LA, Corrêa PS, Blauth AHEG, Cechetti F. Effects of aerobic cycling training on mobility and functionality of acute stroke subjects: a randomized clinical trial. NeuroRehabilitation. 2021;48(1):39–47. https://doi.org/10.3233/NRE-201585.

    Article  PubMed  Google Scholar 

  49. Liu M, Luo J, Zhou J, Zhu X. Intervention effect of neuromuscular electrical stimulation on ICU acquired weakness: a meta-analysis. Int J Nurs Sci. 2020;7(2):228–37. https://doi.org/10.1016/j.ijnss.2020.03.00250.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Silva PE, de Cássia Marqueti R, Livino-de-Carvalho K, de Araujo AET, Castro J, da Silva VM, Vieira L, Souza VC, Dantas LO, Cipriano G Jr, Nóbrega OT, Babault N, Durigan JLQ. Neuromuscular electrical stimulation in critically ill traumatic brain injury patients attenuates muscle atrophy, neurophysiological disorders, and weakness: a randomized controlled trial. J Intensive Care. 2019;12(7):59. https://doi.org/10.1186/s40560-019-0417-x.

    Article  Google Scholar 

  51. Hirose T, Shiozaki T, Shimizu K, Mouri T, Noguvhi K, Ohnishi M, Shimazu T. The effect of electrical muscle stimulation on the prevention of disuse muscle atrophy in patients consciousness disturbance in the intensive care unit. J Crit Care. 2013;28(4):536. https://doi.org/10.1016/j.jcrc.2013.02.010.

    Article  Google Scholar 

  52. AVERT Trial Collaboration group. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet. 2015;386(9988):46–55. https://doi.org/10.1016/S0140-6736(15)60690-0.

    Article  Google Scholar 

  53. Thijs RD, Brignole M, Falup-Pecurariu C, Fanciulli A, Freeman R, Guaraldi P, Jordan J, Habek M, Hilz M, Pavy-LeTraon A, Stankovic I, Struhal W, Sutton R, Wenning G, van Dijk JG. Recommendations for tilt table testing and other provocative cardiovascular autonomic tests in conditions that may cause transient loss of consciousness : consensus statement of the European Federation of Autonomic Societies (EFAS) endorsed by the American Autonomic Society (AAS) and the European Academy of Neurology (EAN). Auton Neurosci. 2021;233: 102792. https://doi.org/10.1016/j.autneu.2021.102792. (Epub 2021 Mar 19 PMID: 33752997).

    Article  PubMed  Google Scholar 

  54. Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. The Consensus Committee of the American Autonomic Society and the American Academy of Neurology. Neurology. 1996;46(5):1470. https://doi.org/10.1212/wnl.46.5.1470. PMID: 8628505.

  55. Kocan MJ, Lietz H. Special considerations for mobilizing patients in the neurointensive care unit. Crit Care Nurs Q. 2013;36(1):50–5. https://doi.org/10.1097/CNQ.0b013e3182750b12.

    Article  PubMed  Google Scholar 

  56. Kumar MA, Romero FG, Dharaneeswaran K. Early mobilization in neurocritical care patients. Curr Opin Crit Care. 2020;26(2):147–54. https://doi.org/10.1097/MCC.0000000000000709.

    Article  PubMed  Google Scholar 

Download references

Funding

Self-funding.

Author information

Authors and Affiliations

Authors

Contributions

TM: Determination of search criteria and eligibility of articles, literary search, manuscript preparation, and manuscript review. PM: writing-reviewing and editing. DS: determination of search criteria and eligibility of articles, literary search, and manuscript review. JG: writing-reviewing and editing. PS: writing-reviewing and editing. AB: determination of search criteria and eligibility of articles, literary search, and manuscript review. The final manuscript was approved by all authors.

Corresponding author

Correspondence to Thaís Ferreira Lopes Diniz Maia.

Ethics declarations

Conflicts of Interest

None.

Ethical Approval/Informed Consent

The authors confirm adherence to ethical guidelines. According to research ethics guidelines, literature reviews do not require approval from an ethics committee, as they do not involve the collection of primary data, the handling of personal information, or any direct interaction with human study participants. Our article is a review study, based on the analysis of previously published literature and publicly available information. Therefore, ethical committee approval was not necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, T.F.L.D., Magalhães, P.A.F., Santos, D.T.S. et al. Current Concepts in Early Mobilization of Critically Ill Patients Within the Context of Neurologic Pathology. Neurocrit Care (2024). https://doi.org/10.1007/s12028-023-01934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12028-023-01934-8

Keywords

Navigation