Skip to main content
Log in

Common Data Elements for Disorders of Consciousness: Recommendations from the Working Group on Neuroimaging

  • Common Data Elements for Disorders of Consciousness:
  • Published:
Neurocritical Care Aims and scope Submit manuscript

A Correction to this article was published on 04 October 2023

This article has been updated

Abstract

Background

Over the past 5 decades, advances in neuroimaging have yielded insights into the pathophysiologic mechanisms that cause disorders of consciousness (DoC) in patients with severe brain injuries. Structural, functional, metabolic, and perfusion imaging studies have revealed specific neuroanatomic regions, such as the brainstem tegmentum, thalamus, posterior cingulate cortex, medial prefrontal cortex, and occipital cortex, where lesions correlate with the current or future state of consciousness. Advanced imaging modalities, such as diffusion tensor imaging, resting-state functional magnetic resonance imaging (fMRI), and task-based fMRI, have been used to improve the accuracy of diagnosis and long-term prognosis, culminating in the endorsement of fMRI for the clinical evaluation of patients with DoC in the 2018 US (task-based fMRI) and 2020 European (task-based and resting-state fMRI) guidelines. As diverse neuroimaging techniques are increasingly used for patients with DoC in research and clinical settings, the need for a standardized approach to reporting results is clear. The success of future multicenter collaborations and international trials fundamentally depends on the implementation of a shared nomenclature and infrastructure.

Methods

To address this need, the Neurocritical Care Society’s Curing Coma Campaign convened an international panel of DoC neuroimaging experts to propose common data elements (CDEs) for data collection and reporting in this field.

Results

We report the recommendations of this CDE development panel and disseminate CDEs to be used in neuroimaging studies of patients with DoC.

Conclusions

These CDEs will support progress in the field of DoC neuroimaging and facilitate international collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Edlow BL, et al. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol. 2021;17(3):135–56.

    Article  PubMed  Google Scholar 

  2. Arnts H, et al. The dilemma of hydrocephalus in prolonged disorders of consciousness. J Neurotrauma. 2020;37(20):2150–2156.

    Article  PubMed  Google Scholar 

  3. Wilson MR, Roos KL. Infectious diseases and impaired consciousness. Neurol Clin. 2011;29(4):927–42.

    Article  PubMed  Google Scholar 

  4. Young MJ, Peterson A. Neuroethics across the disorders of consciousness care continuum. Semin Neurol. 2022;42(3):375–92.

    Article  PubMed  Google Scholar 

  5. Fins JJ. The ethics of measuring and modulating consciousness: the imperative of minding time. Prog Brain Res. 2009;177:371–82.

    Article  PubMed  Google Scholar 

  6. Sanz LRD, et al. Update on neuroimaging in disorders of consciousness. Curr Opin Neurol. 2021;34(4):488–96.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fischer D, et al. Applications of advanced MRI to disorders of consciousness. Semin Neurol. 2022;42(3):325–334.

    Article  PubMed  Google Scholar 

  8. Parvizi J, Damasio AR. Neuroanatomical correlates of brainstem coma. Brain. 2003;126(Pt 7):1524–36.

    Article  PubMed  Google Scholar 

  9. Edlow BL, et al. Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol. 2013;72(6):505–23.

    Article  PubMed  Google Scholar 

  10. Fischer DB, et al. A human brain network derived from coma-causing brainstem lesions. Neurology. 2016;87(23):2427–34.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Izzy S, et al. Revisiting grade 3 diffuse axonal injury: not all brainstem microbleeds are prognostically equal. Neurocrit Care. 2017;27(2):199–207.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Snider SB, et al. Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem. Hum Brain Mapp. 2020;41(6):1520–31.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bianciardi M, et al. Location of subcortical microbleeds and recovery of consciousness after severe traumatic brain injury. Neurology. 2021;97(2):e113–23.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lutkenhoff ES, et al. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann Neurol. 2015;78(1):68–76.

    Article  PubMed  Google Scholar 

  15. Fernandez-Espejo D, et al. Reductions of thalamic volume and regional shape changes in the vegetative and the minimally conscious states. J Neurotrauma. 2010;27(7):1187–93.

    Article  PubMed  Google Scholar 

  16. Fernandez-Espejo D, et al. Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. Neuroimage. 2011;54(1):103–12.

    Article  PubMed  Google Scholar 

  17. Annen J, et al. Regional brain volumetry and brain function in severely brain-injured patients. Ann Neurol. 2018;83(4):842–53.

    Article  CAS  PubMed  Google Scholar 

  18. Boly M, et al. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clin Neuroimaging Evid J Neurosci. 2017;37(40):9603–13.

    CAS  Google Scholar 

  19. Snider SB, et al. Regional distribution of brain injury after cardiac arrest: clinical and electrographic correlates. Neurology. 2022;98(12):e1238–47.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vanhaudenhuyse A, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. 2010;133(Pt 1):161–71.

    Article  PubMed  Google Scholar 

  21. Newcombe VF, et al. Aetiological differences in neuroanatomy of the vegetative state: insights from diffusion tensor imaging and functional implications. J Neurol Neurosurg Psychiatry. 2010;81(5):552–61.

    Article  PubMed  Google Scholar 

  22. Fernandez-Espejo D, et al. Combination of diffusion tensor and functional magnetic resonance imaging during recovery from the vegetative state. BMC Neurol. 2010;10:77.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Norton L, et al. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology. 2012;78(3):175–81.

    Article  CAS  PubMed  Google Scholar 

  24. Fernandez-Espejo D, et al. A role for the default mode network in the bases of disorders of consciousness. Ann Neurol. 2012;72(3):335–43.

    Article  PubMed  Google Scholar 

  25. Demertzi A, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(Pt 9):2619–31.

    Article  PubMed  Google Scholar 

  26. Thengone DJ, et al. Local changes in network structure contribute to late communication recovery after severe brain injury. Sci Transl Med. 2016;8(368):368re5.

    Article  PubMed  Google Scholar 

  27. Sair HI, et al. Early functional connectome integrity and 1-year recovery in comatose survivors of cardiac arrest. Radiology. 2018;287(1):247–55.

    Article  PubMed  Google Scholar 

  28. Threlkeld ZD, et al. Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury. Cortex. 2018;106:299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Demertzi A, et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci Adv. 2019;5(2):eaat7603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spindler LRB, et al. Dopaminergic brainstem disconnection is common to pharmacological and pathological consciousness perturbation. Proc Natl Acad Sci USA. 2021;118(30):e2026289118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amiri M, et al. Multimodal prediction of residual consciousness in the intensive care unit: the CONNECT-ME study. Brain. 2023;146(1):50–64.

    Article  PubMed  Google Scholar 

  32. Snider SB, et al. Ascending arousal network connectivity during recovery from traumatic coma. Neuroimage Clin. 2020;28: 102503.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Annen J, et al. Function-structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET. Hum Brain Mapp. 2016;37(11):3707–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Panda R, et al. Disruption in structural-functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness. Elife. 2022;11:e77462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galanaud D, et al. Assessment of white matter injury and outcome in severe brain trauma: a prospective multicenter cohort. Anesthesiology. 2012;117(6):1300–10.

    Article  PubMed  Google Scholar 

  36. Velly L, et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: a multicentre, international, prospective, observational, cohort study. Lancet Neurol. 2018;17(4):317–26.

    Article  PubMed  Google Scholar 

  37. Puybasset L, et al. Prognostic value of global deep white matter DTI metrics for 1-year outcome prediction in ICU traumatic brain injury patients: an MRI-COMA and CENTER-TBI combined study. Intensive Care Med. 2022;48(2):201–12.

    Article  PubMed  Google Scholar 

  38. Norton L, et al. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology. 2012;78:175–81.

    Article  CAS  PubMed  Google Scholar 

  39. Koenig MA, et al. MRI default mode network connectivity is associated with functional outcome after cardiopulmonary arrest. Neurocrit Care. 2014;20(3):348–57.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Silva S, et al. Disruption of posteromedial large-scale neural communication predicts recovery from coma. Neurology. 2015;85:1–9.

    Article  Google Scholar 

  41. Song M, et al. Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics. Elife. 2018;7:e36173.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sair HI, et al. Early functional connectome integrity and 1-year recovery in comatose survivors of cardiac arrest. Radiology. 2018;287:247–55.

    Article  PubMed  Google Scholar 

  43. Guo H, et al. Evaluation of prognosis in patients with severe traumatic brain injury using resting-state functional magnetic resonance imaging. World Neurosurg. 2019;121:e630–9.

    Article  PubMed  Google Scholar 

  44. Yu Y, et al. A multi-domain prognostic model of disorder of consciousness using resting-state fMRI and laboratory parameters. Brain Imaging Behav. 2020;15:1966–76.

    Article  PubMed  Google Scholar 

  45. Pugin D, et al. Resting-state brain activity for early prediction outcome in postanoxic patients in a coma with indeterminate clinical prognosis. Am J Neuroradiol. 2020;41:1022–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peran P, et al. Functional and Structural Integrity of Frontoparietal Connectivity in Traumatic and Anoxic Coma. Crit Care Med. 2020;48:e639.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fischer D, et al. Intact brain network function in an unresponsive patient with COVID-19. Ann Neurol. 2020;88(4):851–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Norton L, et al. Functional neuroimaging as an assessment tool in critically ill patients. Ann Neurol. 2023;93(1):131–41.

    Article  PubMed  Google Scholar 

  49. Thibaut A, et al. Preservation of brain activity in unresponsive patients identifies MCS star. Ann Neurol. 2021;90(1):89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boerwinkle VL, et al. Association of network connectivity via resting state functional MRI with consciousness, mortality, and outcomes in neonatal acute brain injury. Neuroimage Clin. 2022;34: 102962.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boerwinkle VL, et al. Resting-state fMRI in disorders of consciousness to facilitate early therapeutic intervention. Neurol Clin Pract. 2019;9(4):e33–5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Boerwinkle VL, et al. Correlating resting-state functional magnetic resonance imaging connectivity by independent component analysis-based epileptogenic zones with intracranial electroencephalogram localized seizure onset zones and surgical outcomes in prospective pediatric intractable epilepsy study. Brain Connect. 2017;7(7):424–42.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chakraborty AR, et al. Resting-state functional magnetic resonance imaging with independent component analysis for presurgical seizure onset zone localization: a systematic review and meta-analysis. Epilepsia. 2020;61(9):1958–68.

    Article  PubMed  Google Scholar 

  54. Guo JN, et al. Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study. Lancet Neurol. 2016;15(13):1336–45.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fischer D, et al. Ictal fMRI: mapping seizure topography with rhythmic bold oscillations. Brain Sci 2022;12(12):1710

  56. Stender J, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet. 2014;384(9942):514–22.

    Article  PubMed  Google Scholar 

  57. Menon DK, et al. Cortical processing in persistent vegetative state. Lancet. 1998;352(9123):200.

    Article  CAS  PubMed  Google Scholar 

  58. Owen AM, et al. Detecting awareness in the vegetative state. Science. 2006;313(5792):1402.

    Article  CAS  PubMed  Google Scholar 

  59. Coleman MR, et al. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain. 2009;132(Pt 9):2541–52.

    Article  CAS  PubMed  Google Scholar 

  60. Monti MM, et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med. 2010;362(7):579–89.

    Article  CAS  PubMed  Google Scholar 

  61. Naci L, Owen AM. Making every word count for nonresponsive patients. JAMA Neurol. 2013;70(10):1235–41.

    PubMed  Google Scholar 

  62. Edlow BL, et al. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain. 2017;140(9):2399–414.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schiff ND. Cognitive motor dissociation following severe brain injuries. JAMA Neurol. 2015;72(12):1413–5.

    Article  PubMed  Google Scholar 

  64. Kondziella D, et al. Preserved consciousness in vegetative and minimal conscious states: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(5):485–92.

    Article  PubMed  Google Scholar 

  65. Schnakers C, et al. Covert cognition in disorders of consciousness: a meta-analysis. Brain Sci. 2020;10(12):930.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fins JJ, Bernat JL. Ethical, palliative, and policy considerations in disorders of consciousness. Neurology. 2018;91(10):471–5.

    Article  PubMed  Google Scholar 

  67. Young MJ, Edlow BL. The quest for covert consciousness: bringing neuroethics to the bedside. Neurology. 2021;96(19):893–6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Peterson A, Aas S, Wasserman D. What justifies the allocation of health care resources to patients with disorders of consciousness? AJOB Neurosci. 2021;12(2–3):127–39.

    Article  PubMed  Google Scholar 

  69. Kondziella D, et al. A precision medicine framework for classifying patients with disorders of consciousness: Advanced Classification of Consciousness Endotypes (ACCESS). Neurocrit Care. 2021;35(Suppl 1):27–36.

    Article  PubMed  Google Scholar 

  70. Boerwinkle V.L. Patient stories: road to recovery. World Coma Day. March 22, 2022. Neurocritical Care Society. https://bit.ly/Peds-CC1. 2022.

  71. Kirsch M, et al. Sedation of patients with disorders of consciousness during neuroimaging: effects on resting state functional brain connectivity. Anesth Analg. 2017;124(2):588–98.

    Article  PubMed  Google Scholar 

  72. Fernandez-Espejo D, Rossit S, Owen AM. A thalamocortical mechanism for the absence of overt motor behavior in covertly aware patients. JAMA Neurol. 2015;72(12):1442–50.

    Article  PubMed  Google Scholar 

  73. Stafford CA, Owen AM, Fernandez-Espejo D. The neural basis of external responsiveness in prolonged disorders of consciousness. Neuroimage Clin. 2019;22: 101791.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Giacino JT, et al. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018;91(10):450–60.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kondziella D, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020;27(5):741–56.

    Article  CAS  PubMed  Google Scholar 

  76. Helbok R, et al. The Curing Coma Campaign International Survey on Coma Epidemiology, Evaluation, and Therapy (COME TOGETHER). Neurocrit Care. 2022;37(1):47–59.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Edlow BL, Fins JJ. Assessment of covert consciousness in the intensive care unit: clinical and ethical considerations. J Head Trauma Rehabil. 2018;33(6):424–34.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Young MJ, et al. Toward uniform insurer coverage for functional MRI following severe brain injury. J Head Trauma Rehabil. 2023;38(4):351–357.

    Article  PubMed  Google Scholar 

  79. Scolding N, Owen AM, Keown J. Prolonged disorders of consciousness: a critical evaluation of the new UK guidelines. Brain. 2021;144(6):1655–60.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Physicians R.C.O. Prolonged disorders of consciousness following sudden onset brain injury. National Clinical Guidelines. London: Royal College of Physicians;2020.

  81. Provencio JJ, et al. The Curing Coma Campaign: framing initial scientific challenges-proceedings of the first curing coma campaign scientific advisory council meeting. Neurocrit Care. 2020;33(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Haacke EM, et al. Common data elements in radiologic imaging of traumatic brain injury. J Magn Reson Imaging. 2010;32(3):516–43.

    Article  PubMed  Google Scholar 

  83. Saver JL, et al. Standardizing the structure of stroke clinical and epidemiologic research data: the National Institute of Neurological Disorders and Stroke (NINDS) Stroke Common Data Element (CDE) project. Stroke. 2012;43(4):967–73.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hackenberg KAM, et al. Common data elements for radiological imaging of patients with subarachnoid hemorrhage: proposal of a multidisciplinary research group. Neurocrit Care. 2019;30(Suppl 1):60–78.

    Article  PubMed  Google Scholar 

  85. Edlow BL, et al. Common data elements for COVID-19 neuroimaging: a GCS-NeuroCOVID proposal. Neurocrit Care. 2021;34(2):365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gorgolewski KJ, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016;3: 160044.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Edlow BL, et al. Personalized connectome mapping to guide targeted therapy and promote recovery of consciousness in the intensive care unit. Neurocrit Care. 2020;33(2):364–75.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fridman EA, et al. Presynaptic dopamine deficit in minimally conscious state patients following traumatic brain injury. Brain. 2019;142(7):1887–93.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Curing Coma Campaign Collaborators are listed in the Supplementary Appendix. Venkatesh Aiyagari, Yama Akbari, Fawaz Al-Mufti, Sheila Alexander, Anne Alexandrov, Ayham Alkhachroum, Moshagan Amiri, Brian Appavu, Meron Awraris Gebre, Mary Kay Bader, Neeraj Badjiata, Ram Balu, Megan Barra, Rachel Beekman, Ettore Beghi, Kathleen Bell, Erta Beqiri, Tracey Berlin, Thomas Bleck, Yelena Bodien, Varina Boerwinkle, Melanie Boly, Alexandra Bonnel, Emery Brown, Eder Caceres, Elizabeth Carroll, Emilio G. Cediel, Sherry Chou, Giuseppe Citerio, Jan Classen, Chad Condie, Katie Cosmas, Claire Creutzfeldt, Neha Dangayach, Michael DeGeorgia, Caroline Der-Nigoghoss, Masoom Desai, Michael Diringer, James Dullaway, Brian Edlow, Ari Ercole, Anna Estraneo, Guido Falcone, Salia Farrokh, Simona Ferioli, Davinia Fernandez-Esp, Ericka Fink, Joseph Fins, Brandon Foreman, Jennifer Frontera, Rishi Ganesan, Ahmeneh Ghavam, Joseph Giacino, Christie Gibbons, Emily Gilmore, Olivia Gosseries, Theresa Green, David Greer, Mary Guanci, Cecil Hahn, Ryan Hakimi, Daniel F Hanley, Jed Hartings, Ahmed Hassan, Claude Hemphill, Holly Hinson, Karen Hirsch, Sarah Hocker, Peter Hu, Xiao Hu, Theresa Human, David Hwang, Judy Illes, Matthew Jaffa, Michael L. James, Anna Janas, Morgan Jones, Emanuela Keller, Maggie Keogh, Jenn Kim, Keri Kim, Hannah Kirsch, Matt Kirschen, Nerissa Ko, Daniel Kondziella, Natalie Kreitzer, Julie Kromm, Abhay Kumar, Pedro Kurtz, Steven Laureys, Thomas Lawson, Nicolas Lejeune, Ariane Lewis, John Liang, Geoffrey Ling, Sarah Livesay, Andrea Luppi, Lori Madden, Craig Maddux, Dea Mahanes, Shraddha Mainali, Nelson Maldonado, Rennan Martins Ribeiro, Marcello Massimini, Stephan Mayer, Victoria McCredie, Molly McNett, Jorge Mejia-Mantill, David Menon, Geert Meyfroidt, Julio Mijangos, Dick Moberg, Asma Moheet, Erika Molteni, Martin Monti, Chris Morrison, Susanne Muehlschlegel, Brooke Murtaugh, Lionel Naccache, Masao Nagayama, Emerson Nairon, Girija Natarajan, Virginia Newcombe, Niklas Nielsen, Filipa Noronha-Falc‹, Paul Nyquist, DaiWai Olson, Marwan Othman, Adrian Owen, Llewellyn Padayachy, Soojin Park, Melissa Pergakis, Len Polizzotto, Nader Pouratian, Marilyn Price Spivack, Lara Prisco, Javier Provencio, Louis Puybasset, Lindsay Rasmussen, Verena Rass, Risa Richardson, Cassia Righy Shinots, Chiara Robba, Courtney Robertson, Benjamin Rohaut, John Rolston, Mario Rosanova, Eric Rosenthal, Mary Beth Russell, Gisele Sampaio Silva, Leandro Sanz, Simone Sarasso, Aarti Sarwal, Nicolas Schiff, Caroline Schnakers, David Seder, Vishank Ar Shah, Amy Shapiro-Rosen, Angela Shapshak, Kartavya Sharma, Tarek Sharshar, Lori Shutter, Jacobo Sitt, Beth Slomine, Peter Smielewski, Wade Smith, Emmanuel Stamatakis, Alexis Steinberg, Robert Stevens, Jose Suarez, Bethany Sussman, Shaurya Taran, Aurore Thibaut, Zachary Threlkeld, Lorenzo Tinti, Daniel Toker, Michel Torbey, Stephen Trevick, Alexis Turgeon, Andrew Udy, Panos Varelas, Chethan Venkatasubba, Paul Vespa, Walter Videtta, Henning Voss, Ford Vox, Amy Wagner, Mark Wainwright, John Whyte, Briana Witherspoon, Aleksandra Yakhind, Ross Zafonte, Darin Zahuranec, Chris Zammit, Bei Zhang, Wendy Ziai, Lara Zimmerman, Elizabeth Zink

Funding

This work was supported by the National Institutes of Health Director’s Office (DP2HD101400), the National Institutes of Health National Institute of Neurological Disorders and Stroke (R21NS113037), the James S. McDonnell Foundation, and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the specific grant agreement No. 945539 (Human Brain Project SGA3).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

BLE, VLB, VFJN, and DF-E wrote the initial draft of the manuscript. All coauthors edited the manuscript and approved the final content. All coauthors contributed equally to the case report forms released with the manuscript.

Corresponding author

Correspondence to Brian L. Edlow.

Ethics declarations

Conflict of interest

None.

Ethical Approval/Informed Consent

New data were not acquired or analyzed for this article, and therefore there was no need for informed consent or approval from an institutional review board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to update the article title.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edlow, B.L., Boerwinkle, V.L., Annen, J. et al. Common Data Elements for Disorders of Consciousness: Recommendations from the Working Group on Neuroimaging. Neurocrit Care 39, 611–617 (2023). https://doi.org/10.1007/s12028-023-01794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-023-01794-2

Keywords

Navigation