Skip to main content

Advertisement

Log in

Extracellular vesicle–encapsulated miR-10a-5p derived from MDSCs restrains germinal center B cells in experimental Sjögren’s syndrome

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Primary Sjögren’s syndrome (pSS) is a progressive systemic autoimmune disease characterized by chronic inflammation of the exocrine glands, resulting in damage to the salivary and lacrimal glands. Our group and other researchers have reported that myeloid-derived suppressor cell-derived extracellular vesicles (MDSC-EVs) could attenuate the progression of autoimmune disease by impairing T-cell function. However, the effect of MDSC-EVs on B-cell function and the underlying mechanism remains largely unknown. In this study, we found that MDSC-EVs significantly attenuated the progression of experimental Sjögren’s syndrome (ESS). Moreover, treatment with MDSC-EVs via intravenous injection markedly reduced the percentage of germinal center (GC) B cells in ESS mice. In vitro, MDSC-EVs could directly suppress the generation of GC B cells and the expression of B cell lymphoma 6 (Bcl-6) in B cells under GC B-cell-polarizing conditions. Mechanistically, miR-10a-5p carried by MDSC-EVs regulated the differentiation of GC B cells by targeting Bcl-6, and inhibition of miR-10a-5p in MDSC-EVs significantly reversed the effect of MDSC-EVs involved in alleviating the development of ESS. Taken together, our findings demonstrated that miR-10a-5p carried by MDSC-EVs inhibited the generation of B cells by targeting Bcl-6 and eventually alleviated the progression of ESS, which may provide novel therapeutic targets for the treatment of pSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are included within the manuscript.

Abbreviations

SS :

Sjögren’s syndrome

SGs :

salivary glands

GCs :

germinal centers

DC :

dendritic cell

MZ :

marginal zone

MDSCs :

myeloid-derived suppressor cells

EVs :

extracellular vesicles

Treg :

regulatory T cell

miRNAs :

microRNAs

Bcl-6 :

B cell lymphoma 6

References

  1. Voulgarelis M, Tzioufas AG. Pathogenetic mechanisms in the initiation and perpetuation of Sjogren’s syndrome. Nat Rev Rheumatol. 2010;6(9):529–37.

    Article  CAS  PubMed  Google Scholar 

  2. Lee KE, Kang JH, Yim YR, Kim JE, Lee JW, Wen L, et al. The significance of ectopic germinal centers in the minor salivary gland of patients with Sjögren’s syndrome. J Korean Med Sci. 2016;31(2):190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Delaleu N, Mydel P, Brun JG, Jonsson MV, Alimonti A, Jonsson R. Sjögren’s syndrome patients with ectopic germinal centers present with a distinct salivary proteome. Rheumatology (Oxford). 2016;55(6):1127–37.

    Article  CAS  PubMed  Google Scholar 

  4. Singh N, Cohen PL. The T cell in Sjogren’s syndrome: force majeure, not spectateur. J Autoimmun. 2012;39(3):229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Le Pottier L, Devauchelle V, Pers JO, Jamin C, Youinou P. The mosaic of B-cell subsets (with special emphasis on primary Sjogren's syndrome). Autoimmun Rev. 2007;6(3):149–54.

    Article  PubMed  Google Scholar 

  6. Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjögren's syndrome. Nat Rev Rheumatol. 2013;9(9):544–56.

    Article  CAS  PubMed  Google Scholar 

  7. Raso F, Sagadiev S, Du S, Gage E, Arkatkar T, Metzler G, et al. Alphav integrins regulate germinal center B cell responses through noncanonical autophagy. J Clin Invest. 2018;128(9):4163–78.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Punet-Ortiz J, Saez Moya M, Cuenca M, Caleiras E, Lazaro A, Engel P. Ly9 (CD229) Antibody Targeting depletes marginal zone and germinal center B cells in lymphoid tissues and reduces salivary gland inflammation in a mouse model of Sjogren’s syndrome. Front Immunol. 2018;9:2661.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park MJ, Lee SH, Kim EK, Lee EJ, Park SH, Kwok SK, et al. Myeloid-derived suppressor cells induce the expansion of regulatory B cells and ameliorate autoimmunity in the sanroque mouse model of systemic lupus erythematosus. Arthritis Rheumatol. 2016;68(11):2717–27.

    Article  CAS  PubMed  Google Scholar 

  10. Wu H, Zhen Y, Ma Z, Li H, Yu J, Xu ZG, et al. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med. 2016;8(331):331ra40.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yin B, Ma G, Yen CY, Zhou Z, Wang GX, Divino CM, et al. Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J Immunol. 2010;185(10):5828–34.

    Article  CAS  PubMed  Google Scholar 

  12. Ioannou M, Alissafi T, Lazaridis I, Deraos G, Matsoukas J, Gravanis A, et al. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol. 2012;188(3):1136–46.

    Article  CAS  PubMed  Google Scholar 

  13. Fujii W, Ashihara E, Hirai H, Nagahara H, Kajitani N, Fujioka K, et al. Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol. 2013;191(3):1073–81.

  14. Tian J, Rui K, Hong Y, Wang X, Xiao F, Lin X, et al. Increased GITRL impairs the function of myeloid-derived suppressor cells and exacerbates primary Sjogren syndrome. J Immunol. 2019;202(6):1693–703.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Tian J, Tang X, Rui K, Tian X, Ma J, et al. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget. 2016;7(13):15356.

  16. Wu X, Zhu D, Tian J, Tang X, Guo H, Ma J, et al. Granulocytic myeloid-derived suppressor cell exosomal prostaglandin E2 ameliorates collagen-induced arthritis by enhancing IL-10(+) B cells. Front Immunol. 2020;11:588500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977.

  18. Gupta D, Wiklander OPB, Wood MJA, El-Andaloussi S. Biodistribution of therapeutic extracellular vesicles. Extracell Vesicles Circul Nucleic Acids. 2023;4(2):170–90.

    Article  CAS  Google Scholar 

  19. Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23(13):7167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–65.

    Article  CAS  PubMed  Google Scholar 

  21. Ragni E, Perucca Orfei C, Papait A, de Girolamo L. Comparison of miRNA cargo in human adipose-tissue vs. amniotic-membrane derived mesenchymal stromal cells extracellular vesicles for osteoarthritis treatment. Extracell Vesicles Circul Nucleic Acids. 2021;2(3):202–21.

    CAS  Google Scholar 

  22. Sims NA, Green JR, Glatt M, Schlict S, Martin TJ, Gillespie MT, et al. Targeting osteoclasts with zoledronic acid prevents bone destruction in collagen-induced arthritis. Arthritis Rheum. 2004;50(7):2338–46.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciume G, Muljo SA, et al. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol. 2012;13(6):587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Capello M, Vykoukal JV, Katayama H, Bantis LE, Wang H, Kundnani DL, et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat Commun. 2019;10(1):254.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tian J, Rui K, Hong Y, Wang X, Xiao F,Lin X, et al. Increased GITRL impairs the function of myeloid-derived suppressor cells and exacerbates primary Sjögren’s syndrome. J Immunol. 2019; 202 (6) 1693-1703.

    Article  CAS  PubMed  Google Scholar 

  26. Choi J, Diao H, Faliti CE, Truong J, Rossi M, Belanger S, et al. Bcl-6 is the nexus transcription factor of T follicular helper cells via repressor-of-repressor circuits. Nat Immunol. 2020;21(7):777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinform. 2015;13(1):17–24.

    Article  CAS  Google Scholar 

  28. Fan Q, Meng X, Liang H, Zhang H, Liu X, Li L, et al. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma. Protein Cell. 2016;7(12):899–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    Article  CAS  PubMed  Google Scholar 

  30. Lewis BPSI, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    Article  CAS  PubMed  Google Scholar 

  31. Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, et al. Exosomes: novel biomarkers for clinical diagnosis. Sci World J. 2015;2015:657086.

    Article  Google Scholar 

  32. Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rui K, Hong Y, Zhu Q, Shi X, Xiao F, Fu H, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate murine Sjogren’s syndrome by modulating the function of myeloid-derived suppressor cells. Cell Mol Immunol. 2021;18(2):440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang C, Melnick A. Mechanisms of action of BCL6 during germinal center B cell development. Sci China Life Sci. 2015;58(12):1226–32.

    Article  CAS  PubMed  Google Scholar 

  35. Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv. 2018;36(1):328–34.

    Article  CAS  PubMed  Google Scholar 

  36. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Huang Y, Zhang Y, Wen J, Chen Y, Wang L, et al. Identification BCL6 and miR-30 family associating with ibrutinib resistance in activated B-cell-like diffuse large B-cell lymphoma. Med Oncol. 2021;38(4):33.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fang Y, Zhou W, Rong Y, Kuang T, Xu X, Wu W, et al. Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res. 2019;383(1):111543.

    Article  CAS  PubMed  Google Scholar 

  39. Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, et al. An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. Mol Neurobiol. 2017;54(4):2901–21.

    Article  CAS  PubMed  Google Scholar 

  40. Li PF, He RH, Shi SB, Li R, Wang QT, Rao GT, et al. Modulation of miR-10a-mediated TGF-beta1/Smads signaling affects atrial fibrillation-induced cardiac fibrosis and cardiac fibroblast proliferation. Biosci Rep. 2019;39(2):BSR20181931.

Download references

Acknowledgements

We thank Dr. Dingqi Feng for performing flow cytometric analysis.

Funding

This work was supported by the Jiangsu Provincial Medical Key Discipline Cultivation Unit (Grant No. JSDW202241) and Jiangsu Province “333” Project (Grant No. BRA2017128).

Author information

Authors and Affiliations

Authors

Contributions

HZ and QZ performed the experiments, analyzed the data, and wrote the manuscript; ML, YZ, JY, and JT analyzed the data; ZM and JM discussed and revised the manuscript; and SW designed the study and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shengjun Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zhu, Q., Mao, Z. et al. Extracellular vesicle–encapsulated miR-10a-5p derived from MDSCs restrains germinal center B cells in experimental Sjögren’s syndrome. Immunol Res 71, 760–770 (2023). https://doi.org/10.1007/s12026-023-09390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-023-09390-4

Keywords

Navigation