Skip to main content

Advertisement

Log in

miRNAs as the important regulators of myasthenia gravis: involvement of major cytokines and immune cells

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Myasthenia gravis (MG) is a type of muscle paralysis created by immune responses against acetylcholine receptor proteins in neuromuscular synapses. This disease is characterized by muscle weakness, especially ocular weakness symptoms that could be ptosis (fall of the upper eyelid) or diplopia (double vision of a single object). Some patients also identified with speech and swallowing problems. The main goals of MG therapeutic approaches are to achieve remission, reduce symptoms, and improve life quality. Recently, other studies have revealed the potential role of various microRNAs (miRNAs) in the development of MG through different mechanisms and have proposed these molecules as effective biomarkers for the treatment of MG. This review was aimed at providing an overview of the critical regulatory roles of various miRNAs in the pathogenesis of this autoimmune disease focusing on human MG studies and the interaction between different miRNAs with important cytokines and immune cells during the development of this autoimmune disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors can confirm that all relevant data are included in the article. Dataset(s) are derived from public resources and made available with the article (references).

Code availability

Not applicable.

References

  1. McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ. 2007;71:78. https://doi.org/10.5688/aj710478.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dresser L, Wlodarski R, Rezania K, Soliven B. Myasthenia gravis: epidemiology, pathophysiology and clinical manifestations. J Clin Med. 2021;10(11):2235. https://doi.org/10.3390/jcm10112235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P, Tzartos S. Myasthenia gravis - autoantibody characteristics and their implications for therapy. Nat Rev Neurol Engl. 2016;12:259–68. https://doi.org/10.1038/nrneurol.2016.44.

    Article  CAS  Google Scholar 

  4. Thanvi BR, Lo TCN. Update on myasthenia gravis. Postgrad Med J. 2004;80:690–700. https://doi.org/10.1136/pgmj.2004.018903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Punga AR, Maddison P, Heckmann JM, Guptill JT, Evoli A. Epidemiology, diagnostics, and biomarkers of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022;21:176–88. https://doi.org/10.1016/S1474-4422(21)00297-0.

    Article  PubMed  Google Scholar 

  6. Berrih-Aknin S, Frenkian-Cuvelier M, Eymard B. Diagnostic and clinical classification of autoimmune myasthenia gravis. J Autoimmun Engl. 2014;48–49:143–8. https://doi.org/10.1016/j.jaut.2014.01.003.

    Article  CAS  Google Scholar 

  7. Renjen PN. Subgroup Classification of Myasthenia Gravis. Ann Indian Acad Neurol. 2021;24:300. https://doi.org/10.4103/aian.AIAN_237_20.

    Article  PubMed  Google Scholar 

  8. Szczudlik P, Szyluk B, Lipowska M, Ryniewicz B, Kubiszewska J, Dutkiewicz M, et al. Antititin antibody in early- and late-onset myasthenia gravis. Acta neurologica Scandinavica Denmark. 2014;130:229–33. https://doi.org/10.1111/ane.12271.

    Article  CAS  Google Scholar 

  9. Kufukihara K, Watanabe Y, Inagaki T, Takamatsu K, Nakane S, Nakahara J, et al. Cytometric cell-based assays for anti-striational antibodies in myasthenia gravis with myositis and/or myocarditis. Sci Rep. 2019;9:5284. https://doi.org/10.1038/s41598-019-41730-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Narayanaswami P, Sanders DB, Wolfe G, Benatar M, Cea G, Evoli A, et al. International consensus guidance for management of myasthenia gravis: 2020 Update. Neurology. 2021;96:114–22. https://doi.org/10.1212/WNL.0000000000011124.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gilhus NE. Myasthenia Gravis. The New England journal of medicine. United States. 2016;375:2570–81. https://doi.org/10.1056/NEJMra1602678.

    Article  CAS  Google Scholar 

  12. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell. 2008;135:334–42. https://doi.org/10.1016/j.cell.2008.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bubuioc A-M, Kudebayeva A, Turuspekova S, Lisnic V, Leone MA. The epidemiology of myasthenia gravis. J med life. 2021;14(1):7–16.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol. 2020;11:212. https://doi.org/10.3389/fimmu.2020.00212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilhus NE, Owe JF, Hoff JM, Romi F, Skeie GO, Aarli JA. Myasthenia gravis: a review of available treatment approaches. Autoimmune Dis. 2011;2011:847393. https://doi.org/10.4061/2011/847393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nair AG, Patil-Chhablani P, Venkatramani DV, Gandhi RA. Ocular myasthenia gravis: a review. Indian J Ophthalmol. 2014;62:985–91. https://doi.org/10.4103/0301-4738.145987.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jordan A, Freimer M. Recent advances in understanding and managing myasthenia gravis. F1000Research. 2018;7. https://doi.org/10.12688/f1000research.15973.1

  18. Melzer N, Ruck T, Fuhr P, Gold R, Hohlfeld R, Marx A, et al. Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the Guidelines of the German Neurological Society. J Neurol. 2016;263:1473–94. https://doi.org/10.1007/s00415-016-8045-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Evoli A, Antonini G, Antozzi C, DiMuzio A, Habetswallner F, Iani C, et al. Italian recommendations for the diagnosis and treatment of myasthenia gravis. Neurol Sci. 2019;40:1111–24. https://doi.org/10.1007/s10072-019-03746-1.

    Article  PubMed  Google Scholar 

  20. Peragallo JH, Bitrian E, Kupersmith MJ, Zimprich F, Whittaker TJ, Lee MS, et al. Relationship between age, gender, and race in patients presenting with myasthenia gravis with only ocular manifestations. J Neuro-Ophthalmol Off J North Am Neuro-Ophthalmol Soc United States. 2016;36:29–32. https://doi.org/10.1097/WNO.0000000000000276.

    Article  Google Scholar 

  21. Schneider-Gold C, Hagenacker T, Melzer N, Ruck T. Understanding the burden of refractory myasthenia gravis. Ther Adv Neurol Disord. 2019;12:1756286419832242. https://doi.org/10.1177/1756286419832242.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alkhawajah NM, Oger J. Treatment of myasthenia gravis in the aged. Drugs aging New Zealand. 2015;32:689–97. https://doi.org/10.1007/s40266-015-0297-2.

    Article  CAS  Google Scholar 

  23. Pfeiffer HCV, Løkkegaard A, Zoetmulder M, Friberg L, Werdelin L. Cognitive impairment in early-stage non-demented Parkinson’s disease patients. Acta neurologica Scandinavica Denmark. 2014;129:307–18. https://doi.org/10.1111/ane.12189.

    Article  CAS  Google Scholar 

  24. Vitturi BK, Kim AIH, Mitre LP, Pellegrinelli A, Valerio BCO. Social, professional and neuropsychiatric outcomes in patients with myasthenia gravis. Neurol Sci. 2021;42:167–73. https://doi.org/10.1007/s10072-020-04528-w.

    Article  PubMed  Google Scholar 

  25. Meriggioli MN, Sanders DB. Muscle autoantibodies in myasthenia gravis: beyond diagnosis? Expert Rev Clin Immunol. 2012;8:427–38. https://doi.org/10.1586/eci.12.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic germinal centers and corticosteroids in myasthenia gravis: an immunopathological study in 1035 cases and a critical review. Clinical reviews in allergy & immunology. United States. 2017;52:108–24. https://doi.org/10.1007/s12016-016-8558-3.

    Article  CAS  Google Scholar 

  27. Vrolix K, Fraussen J, Losen M, Stevens J, Lazaridis K, Molenaar PC, et al. Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. J Autoimmun Engl. 2014;52:101–12. https://doi.org/10.1016/j.jaut.2013.12.008.

    Article  CAS  Google Scholar 

  28. Balasa B, Sarvetnick N. Is pathogenic humoral autoimmunity a Th1 response? Lessons from (for) myasthenia gravis. Immunol today Engl. 2000;21:19–23. https://doi.org/10.1016/S0167-5699(99)01553-4.

    Article  CAS  Google Scholar 

  29. Vinuesa CG, Linterman MA, Yu D, MacLennan ICM. Follicular helper T cells. Annual Rev Immun United States. 2016;34:335–68. https://doi.org/10.1146/annurev-immunol-041015-055605.

    Article  CAS  Google Scholar 

  30. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annual review of immunology United States. 2009;27:485–517. https://doi.org/10.1146/annurev.immunol.021908.132710.

    Article  CAS  Google Scholar 

  31. Masuda M, Matsumoto M, Tanaka S, Nakajima K, Yamada N, Ido N, et al. Clinical implication of peripheral CD4+CD25+ regulatory T cells and Th17 cells in myasthenia gravis patients. J Neuroimmunol Netherlands. 2010;225:123–31. https://doi.org/10.1016/j.jneuroim.2010.03.016.

    Article  CAS  Google Scholar 

  32. Çebi M, Durmus H, Aysal F, Özkan B, Gül GE, Çakar A, et al. CD4(+) T cells of myasthenia gravis patients are characterized by increased IL-21, IL-4, and IL-17A productions and higher presence of PD-1 and ICOS. Front Immunol. 2020;11:809. https://doi.org/10.3389/fimmu.2020.00809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yousefi Z, Mirsanei Z, Bitaraf FS, Mahdavi S, Mirzaii M, Jafari R. Dose-dependent effects of oleuropein administration on regulatory T-cells in patients with rheumatoid arthritis: an in vitro approach. Int J Immunopathol Pharmacol. 2022;36:3946320221086084. https://doi.org/10.1177/03946320221086084.

    Article  CAS  PubMed  Google Scholar 

  34. Sabre L, Punga T, Punga AR. Circulating miRNAs as potential biomarkers in myasthenia gravis: tools for personalized medicine. Front Immunol. 2020;11:213. https://doi.org/10.3389/fimmu.2020.00213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Golabi M, Fathi F, Samadi M, Hesamian MS, Eskandari N. Identification of potential biomarkers in the peripheral blood mononuclear cells of relapsing-remitting multiple sclerosis patients. Inflamm United States. 2022;45:1815–28. https://doi.org/10.3389/fimmu.2020.00213.

    Article  CAS  Google Scholar 

  36. Kabekkodu SP, Shukla V, Varghese VK, D’Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biological reviews of the Cambridge Philosophical Society. Biol Rev. 2018;93:1955–86. https://doi.org/10.1111/brv.12428.

    Article  PubMed  Google Scholar 

  37. Asadi M, Shanehbandi D, Zafari V, Khaze V, Somi MH, Hashemzadeh S. Transcript level of microRNA processing elements in gastric cancer. J Gastrointest Cancer United States. 2019;50:855–9. https://doi.org/10.1007/s12029-018-0154-8.

    Article  CAS  Google Scholar 

  38. Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q. Dysregulation of microRNAs in autoimmune diseases: pathogenesis, biomarkers and potential therapeutic targets. Cancer letters Ireland. 2018;428:90–103. https://doi.org/10.1016/j.canlet.2018.04.016.

    Article  CAS  Google Scholar 

  39. Cron MA, Guillochon É, Kusner L, Le Panse R. Role of miRNAs in normal and myasthenia gravis thymus. Front Immunol. 2020;11:1074. https://doi.org/10.3389/fimmu.2020.01074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Montazeri M, Eskandari N, Mansouri R. Evaluation of the expressed miR-129 and miR-549a in patients with multiple sclerosis. Adv Biomed Res. 2021;10:48. https://doi.org/10.4103/abr.abr_268_20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang L, Zhang L. Emerging roles of dysregulated microRNAs in myasthenia gravis. Front Neurosci. 2020;14:507. https://doi.org/10.3389/fnins.2020.00507.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Punga AR, Andersson M, Alimohammadi M, Punga T. Disease specific signature of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients. J Neurol Sci Netherlands. 2015;356:90–6. https://doi.org/10.1016/j.jns.2015.06.019.

    Article  CAS  Google Scholar 

  43. Punga T, Le Panse R, Andersson M, Truffault F, Berrih-Aknin S, Punga AR. Circulating miRNAs in myasthenia gravis: miR-150-5p as a new potential biomarker. Ann Clin Trans Neurol. 2014;1:49–58. https://doi.org/10.1002/acn3.24.

    Article  CAS  Google Scholar 

  44. Punga AR, Punga T. Circulating microRNAs as potential biomarkers in myasthenia gravis patients. Ann New York Acad Sci United States. 2018;1412:33–40. https://doi.org/10.1111/nyas.13510.

    Article  CAS  Google Scholar 

  45. Sabre L, Maddison P, Sadalage G, Ambrose PA, Punga AR. Circulating microRNA miR-21-5p, miR-150-5p and miR-30e-5p correlate with clinical status in late onset myasthenia gravis. J Neuroimmunol Netherlands. 2018;321:164–70. https://doi.org/10.1016/j.jneuroim.2018.05.003.

    Article  CAS  Google Scholar 

  46. Wang J, Guan X, Guo F, Zhou J, Chang A, Sun B, et al. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis. 2013;4:e845. https://doi.org/10.1038/cddis.2013.356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sabre L, Guptill JT, Russo M, Juel VC, Massey JM, Howard JFJ, et al. Circulating microRNA plasma profile in MuSK+ myasthenia gravis. J Neuroimmunol. 2018;325:87–91. https://doi.org/10.1016/j.jneuroim.2018.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Punga T, Bartoccioni E, Lewandowska M, Damato V, Evoli A, Punga AR. Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis. J Neuroimmunol Netherlands. 2016;292:21–6. https://doi.org/10.1016/j.jneuroim.2016.01.003.

    Article  CAS  Google Scholar 

  49. Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, et al. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev Rep. 2015;11:394–407. https://doi.org/10.1007/s12015-014-9558-4.

    Article  CAS  PubMed  Google Scholar 

  50. Liu X, Luo M, Meng H, Zeng Q, Xu L, Hu B, et al. MiR-181a regulates CD4(+) T cell activation and differentiation by targeting IL-2 in the pathogenesis of myasthenia gravis. Germany: European journal of immunology; 2019. https://doi.org/10.1002/eji.201848007.

    Book  Google Scholar 

  51. Bortone F, Scandiffio L, Marcuzzo S, Bonanno S, Frangiamore R, Motta T, et al. miR-146a in myasthenia gravis thymus bridges innate immunity with autoimmunity and is linked to therapeutic effects of corticosteroids. Frontiers in Immunology. 2020;11. https://doi.org/10.3389/fimmu.2020.00142

  52. Wang Y-Z, Tian F-F, Yan M, Zhang J-M, Liu Q, Lu J-Y, et al. Delivery of an miR155 inhibitor by anti-CD20 single-chain antibody into B cells reduces the acetylcholine receptor-specific autoantibodies and ameliorates experimental autoimmune myasthenia gravis. Clin Exp Immunol. 2014;176:207–21. https://doi.org/10.1111/cei.12265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yeh J-H, Wang S-H, Chien P-J, Shih C-M, Chiu H-C. Changes in serum cytokine levels during plasmapheresis in patients with myasthenia gravis. Eur J Neurol Engl. 2009;16:1318–22. https://doi.org/10.1111/j.1468-1331.2009.02729.x.

    Article  Google Scholar 

  54. Matusevicius D, Navikas V, Palasik W, Pirskanen R, Fredrikson S, Link H. Tumor necrosis factor-alpha, lymphotoxin, interleukin (IL)-6, IL-10, IL-12 and perforin mRNA expression in mononuclear cells in response to acetylcholine receptor is augmented in myasthenia gravis. J Neuroimmunol Netherlands. 1996;71:191–8. https://doi.org/10.1016/S0165-5728(96)00152-X.

    Article  CAS  Google Scholar 

  55. Jiang L, Cheng Z, Qiu S, Que Z, Bao W, Jiang C, et al. Altered let-7 expression in Myasthenia gravis and let-7c mediated regulation of IL-10 by directly targeting IL-10 in Jurkat cells. Int immunopharmacol Netherlands. 2012;14:217–23. https://doi.org/10.1016/j.intimp.2012.07.003.

    Article  CAS  Google Scholar 

  56. Cheng Z, Qiu S, Jiang L, Zhang A, Bao W, Liu P, et al. MiR-320a is downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by targeting mitogen-activated protein kinase 1. J Clin Immunol Netherlands. 2013;33:567–76. https://doi.org/10.1007/s10875-012-9834-5.

    Article  CAS  Google Scholar 

  57. Shi L, Liu T, Zhang M, Guo Y, Song C, Song D, et al (2015) miR-15b is Downregulated in Myasthenia Gravis Patients and Directly Regulates the Expression of Interleukin-15 (IL-15) in Experimental Myasthenia Gravis Mice. Medical science monitor : international medical journal of experimental and clinical research. 21:1774–80. https://doi.org/10.12659/MSM.893458

  58. Roche JC, Capablo JL, Larrad L, Gervas-Arruga J, Ara JR, Sánchez A, et al. Increased serum interleukin-17 levels in patients with myasthenia gravis. Muscle Nerve United States. 2011;44:278–80. https://doi.org/10.1002/mus.22070.

    Article  CAS  Google Scholar 

  59. Zhang Y, Guo M, Xin N, Shao Z, Zhang X, Zhang Y, et al. Decreased microRNA miR-181c expression in peripheral blood mononuclear cells correlates with elevated serum levels of IL-7 and IL-17 in patients with myasthenia gravis. Clin Exp Med Italy. 2016;16:413–21. https://doi.org/10.1007/s10238-015-0358-1.

    Article  CAS  Google Scholar 

  60. Chunjie N, Huijuan N, Zhao Y, Jianzhao W, Xiaojian Z. Disease-specific signature of serum miR-20b and its targets IL-8 and IL-25, in myasthenia gravis patients. Eur Cytokine Network France. 2015;26:61–6. https://doi.org/10.1684/ecn.2015.0367.

    Article  CAS  Google Scholar 

  61. Wang J, Zheng S, Xin N, Dou C, Fu L, Zhang X, et al. Identification of novel MicroRNA signatures linked to experimental autoimmune myasthenia gravis pathogenesis: down-regulated miR-145 promotes pathogenetic Th17 cell response. J Neuroimmune Pharmacol United States. 2013;8:1287–302. https://doi.org/10.1007/s11481-013-9498-9.

    Article  Google Scholar 

  62. Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol (Baltimore, Md : 1950) United States. 2002;168:3195–204. https://doi.org/10.4049/jimmunol.168.7.3195.

    Article  CAS  Google Scholar 

  63. Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine & Growth Factor Rev England. 2015;26:311–27. https://doi.org/10.1016/j.cytogfr.2014.11.009.

    Article  CAS  Google Scholar 

  64. Liu X-F, Wang R-Q, Hu B, Luo M-C, Zeng Q-M, Zhou H, et al (2016) MiR-15a contributes abnormal immune response in myasthenia gravis by targeting CXCL10 Clinical immunology (Orlando, Fla) United States 164:106–13 https://doi.org/10.1016/j.clim.2015.12.009

  65. Li J, Qiu D, Chen Z, Du W, Liu J, Mo X. miR-548k regulates CXCL13 expression in myasthenia gravis patients with thymic hyperplasia and in Jurkat cells. J Neuroimmunol Netherlands. 2018;320:125–32. https://doi.org/10.1016/j.jneuroim.2018.03.021.

    Article  CAS  Google Scholar 

  66. Li J, Qiu D, Chen Z, Du W, Liu J, Mo X. Altered expression of miR-125a-5p in thymoma-associated myasthenia gravis and its down-regulation of foxp3 expression in Jurkat cells. Immunol lett Netherlands. 2016;172:47–55. https://doi.org/10.1016/j.imlet.2016.02.005.

    Article  CAS  Google Scholar 

  67. Ao W, Tian C, He X, Hu Y, Wang W, Liu Y. Upregulation of miR150–5p in generalized myasthenia gravis patients is associated with decreased serum levels of IL-17 and increased serum levels of IL-10. Biomed papers Med Fac of the University Palacky, Olomouc, Czechoslovakia Czech Republic. 2020;164:57–62. https://doi.org/10.5507/bp.2019.009.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MG, ZY, MJ, MM, and NE conceptualized the study and wrote the manuscript. SB and BG contributed to edit an drafting of the manuscript. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding author

Correspondence to Nahid Eskandari.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golabi, M., Yousefi, Z., Jafarinia, M. et al. miRNAs as the important regulators of myasthenia gravis: involvement of major cytokines and immune cells. Immunol Res 71, 153–163 (2023). https://doi.org/10.1007/s12026-022-09342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-022-09342-4

Keywords

Navigation