Skip to main content

Advertisement

Log in

A new CHO (Chinese hamster ovary)-derived cell line expressing anti-TNFα monoclonal antibody with biosimilar potential

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that mediates the homeostasis of immune responses; its exacerbated production is associated with the pathogenesis of autoimmune and chronic inflammatory diseases. Anti-TNFα drugs have revolutionized the treatment of inflammatory conditions such as rheumatoid arthritis and Crohn’s disease. Currently, a worldwide race is on stage for the production of biosimilars moved by patent expiration of monoclonal antibodies (mAbs), such as anti-TNFα adalimumab. Our goal was to develop the first stage of an adalimumab biosimilar candidate with potential for national production, through the generation of a productive and stable cell line and assess its functionality. The robotic system ClonePix was used for screening and isolation of colonies from transfected CHO-S stable pools plated in semisolid medium. Selected clones were expanded based on growth and productivity. Purified mAbs from different clones were tested for binding and functional activity. The binding affinity of the denominated adabut clones to TNFα and FcRγ did not differ statistically when compared to reference adalimumab. One functional activity assay demonstrated the antibody neutralization capacity of the cytotoxicity induced by TNFα in L929 murine fibroblasts. A second assay confirmed adabut as an antagonist of the TNFα activity by the inhibition of the cell adhesion molecule expression in HUVEC cultures. The binding and functional activity analyses performed with selected adabut clones in comparison to reference adalimumab represent an important status of “non-inferiority,” part of the process required for a biosimilar development. We generated and selected high-quality adabut clones which mAbs may be further developed as the first in-house made Brazilian biosimilar, demonstrating a success case for our incipient biotechnology industry, or also modified as biobetters, thus representing an innovative strategy for the patients’ welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci. 2002;27(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  2. Dejana E, Ji-Ming W, Mantovani A. The recruitment of leukocytes and their interaction with the vessel wall: the role of interleukin-1 and tumor necrosis factor. Scand J Rheumatol Suppl. 1987;66:19–25.

    Article  PubMed  CAS  Google Scholar 

  3. Murray J, Barbara JA, Dunkley SA, Lopez AF, Van Ostade X, Condliffe AM, et al. Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood. 1997;90(7):2772–83.

    PubMed  CAS  Google Scholar 

  4. Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;214(2):149–60. https://doi.org/10.1002/path.2287.

    Article  PubMed  CAS  Google Scholar 

  5. Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 2005;115(1):1–20. https://doi.org/10.1111/j.1365-2567.2005.02143.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Devin A, Lin Y, Yamaoka S, Li Z, Karin M, Liu Z. The alpha and beta subunits of IkappaB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF. Mol Cell Biol. 2001;21(12):3986–94. https://doi.org/10.1128/MCB.21.12.3986-3994.2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4(5):313–21. https://doi.org/10.1038/nchembio.83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene. 2001;20(52):7597–609. https://doi.org/10.1038/sj.onc.1204997.

    Article  PubMed  CAS  Google Scholar 

  9. Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO. Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells. 2008;26(9):2361–71. https://doi.org/10.1634/stemcells.2007-0914.

    Article  PubMed  CAS  Google Scholar 

  10. Noti M, Corazza N, Mueller C, Berger B, Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med. 2010;207(5):1057–66. https://doi.org/10.1084/jem.20090849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Davis R, Pillai S, Lawrence N, Sebti S, Chellappan SP. TNF-alpha-mediated proliferation of vascular smooth muscle cells involves Raf-1-mediated inactivation of Rb and transcription of E2F1-regulated genes. Cell Cycle. 2012;11(1):109–18. https://doi.org/10.4161/cc.11.1.18473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 2009;9(4):271–85. https://doi.org/10.1038/nri2526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Remicade (infliximab), Janssen Biotech. 2018. https://www.remicade.com/. Accessed 12 Apr 2018.

  14. Kornbluth A. Infliximab approved for use in Crohn’s disease: a report on the FDA GI Advisory Committee conference. Inflamm Bowel Dis. 1998;4(4):328–9.

    Article  PubMed  CAS  Google Scholar 

  15. Scott LJ. Etanercept: a review of its use in autoimmune inflammatory diseases. Drugs. 2014;74(12):1379–410. https://doi.org/10.1007/s40265-014-0258-9.

    Article  PubMed  CAS  Google Scholar 

  16. Humira (adalimumab): Authorisation details. European Medicines Agency (EMA). http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000481/human_med_000822.jsp&mid=WC0b01ac058001d124. Accessed 18 Jul 2017.

  17. Burmester GR, Matucci-Cerinic M, Mariette X, Navarro-Blasco F, Kary S, Unnebrink K, et al. Safety and effectiveness of adalimumab in patients with rheumatoid arthritis over 5 years of therapy in a phase 3b and subsequent postmarketing observational study. Arthritis Res Ther. 2014;16(1):R24. https://doi.org/10.1186/ar4452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gordon K, Papp K, Poulin Y, Gu Y, Rozzo S, Sasso EH. Long-term efficacy and safety of adalimumab in patients with moderate to severe psoriasis treated continuously over 3 years: results from an open-label extension study for patients from REVEAL. J Am Acad Dermatol. 2012;66(2):241–51. https://doi.org/10.1016/j.jaad.2010.12.005.

    Article  PubMed  CAS  Google Scholar 

  19. Mease P, Sieper J, Van den Bosch F, Rahman P, Karunaratne PM, Pangan AL. Randomized controlled trial of adalimumab in patients with nonpsoriatic peripheral spondyloarthritis. Arthritis Rheumatol. 2015;67(4):914–23. https://doi.org/10.1002/art.39008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Reinisch W, Sandborn WJ, Panaccione R, Huang B, Pollack PF, Lazar A, et al. 52-week efficacy of adalimumab in patients with moderately to severely active ulcerative colitis who failed corticosteroids and/or immunosuppressants. Inflamm Bowel Dis. 2013;19(8):1700–9. https://doi.org/10.1097/MIB.0b013e318281f2b7.

    Article  PubMed  Google Scholar 

  21. Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: past, present and future. Int Immunol. 2015;27(1):55–62. https://doi.org/10.1093/intimm/dxu102.

    Article  PubMed  CAS  Google Scholar 

  22. Goel N, Stephens S. Certolizumab pegol. MAbs. 2010;2(2):137–47.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mazumdar S, Greenwald D. Golimumab. MAbs. 2009;1(5):422–31.

    Article  PubMed  PubMed Central  Google Scholar 

  24. FDA approves Inflectra, a biosimilar to Remicade. U.S. Food & Drug Administration (FDA) News Release. 2016. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm494227.htm. Accessed 18 Jul 2017.

  25. Tesser JR, Furst DE, Jacobs I. Biosimilars and the extrapolation of indications for inflammatory conditions. Biologics. 2017;11:5–11. https://doi.org/10.2147/BTT.S124476.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Flixabi (infliximab): Authorisation details. European Medicines Agency (EMA). http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004020/human_med_001980.jsp&mid=WC0b01ac058001d124. Accessed 18 Jul 2017.

  27. Samsung Bioepis Obtains First Drug Approval in the United States, as the U.S. Food and Drug Administration Approves RENFLEXIS™ (Infliximab-abda) Across All Eligible Indications. Samsung Bioepis Newsroom. 2017. http://www.samsungbioepis.com/en/newsroom/detail/Samsung-Bioepis-SB2-US-FDA-Approval-FINAL.html. Accessed 18 Jul 2017.

  28. Benepali (etanercept): Authorisation details. European Medicines Agency (EMA). http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004007/human_med_001944.jsp&mid=WC0b01ac058001d124. Accessed 18 Jul 2017.

  29. Erelzi (etanercept): Authorisation details. European Medicines Agency (EMA). http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004192/human_med_002112.jsp&mid=WC0b01ac058001d124. Accessed 18 Jul 2017.

  30. FDA approves Erelzi, a biosimilar to Enbrel. U.S. Food & Drug Administration (FDA) News Release. 2016. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm518639.htm. Accessed 18 Jul 2017.

  31. Lifmior (etanercept): Authorisation details. European Medicines Agency (EMA). 2017. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004167/human_med_002080.jsp&mid=WC0b01ac058001d124. Accessed 18 Jul 2017.

  32. Amgevita (adalimumab): Authorisation details. European Medicines Agency (EMA). http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004212/human_med_002081.jsp&mid=WC0b01ac058001d124. Accessed 18 Jul 2017.

  33. FDA approves Amjevita, a biosimilar to Humira. U.S. Food & Drug Administration (FDA) News Release. 2016. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm522243.htm. Accessed 18 Jul 2017.

  34. Brennan Z. Duplicate MAAs: Amgen Wins EU-wide Approval for Two Humira Biosimilars. Regulatory Affairs Professionals Society (RAPS). 2017. http://www.raps.org/Regulatory-Focus/News/2017/03/24/27187/Updated-Duplicate-MAAs-Amgen-Wins-EU-wide-Approval-for-Two-Humira-Biosimilars/. Accessed 19 Jul 2017.

  35. Vaysbrot E. Patent expiry dates for biologicals: 2016 update. Generics Biosimilars Initiat J. 2017;6(1):27–30. https://doi.org/10.5639/gabij.2017.0601.006.

    Article  Google Scholar 

  36. Norman P. Humira: the impending patent battles over adalimumab biosimilars. Pharm Pat Anal. 2016;5(3):141–5. https://doi.org/10.4155/ppa-2016-0002.

    Article  PubMed  CAS  Google Scholar 

  37. Kosmac M, Avcin T, Toplak N, Simonini G, Cimaz R, Curin SV. Exploring the binding sites of anti-infliximab antibodies in pediatric patients with rheumatic diseases treated with infliximab. Pediatr Res. 2011;69(3):243–8. https://doi.org/10.1203/PDR.0b013e318208451d.

    Article  PubMed  CAS  Google Scholar 

  38. Akinbosoye O, Matlin OS, Mostovoy L, Brown F, Szychowski JA. Conventional and biologic rheumatoid arthritis therapies: utilization and cost trends. Am J Pharm Benefits. 2012;4(6):295–8.

    Google Scholar 

  39. Singh JA, Saag KG, Bridges SL Jr, Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2016;68(1):1–25. https://doi.org/10.1002/acr.22783.

    Article  Google Scholar 

  40. De Keyser F, De Kock J, Leroi H, Durez P, Westhovens R, Infliximab EAPSG. Ten-year followup of infliximab therapy in rheumatoid arthritis patients with severe, longstanding refractory disease: a cohort study. J Rheumatol. 2014;41(7):1276–81. https://doi.org/10.3899/jrheum.131270.

    Article  PubMed  CAS  Google Scholar 

  41. de Vlam K, Boone C, The Prove Study Group A. Treatment adherence, efficacy, and safety of etanercept in patients with active psoriatic arthritis and peripheral involvement in Belgium for 66 months (PROVE study). Clin Exp Rheumatol. 2015;33(5):624–31.

    PubMed  Google Scholar 

  42. Salfeld JG, Allen DJ, Hoogenboom HRJM, Kaymakcalan Z, Labkovsky B, Mankovich JA et al., inventors; Human antibodies that bind human TNFα patent US6090382 2000.

  43. Humira (adalimumab), Abbvie Inc. 2017. https://www.humira.com/. Accessed 18 Jul 2017.

  44. Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991;10(13):4025–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. den Broeder A, van de Putte L, Rau R, Schattenkirchner M, Van Riel P, Sander O, et al. A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol. 2002;29(11):2288–98.

    Google Scholar 

  46. Kempeni J. Preliminary results of early clinical trials with the fully human anti-TNFalpha monoclonal antibody D2E7. Ann Rheum Dis. 1999;58(Suppl 1):I70–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rau R. Adalimumab (a fully human anti-tumour necrosis factor alpha monoclonal antibody) in the treatment of active rheumatoid arthritis: the initial results of five trials. Ann Rheum Dis. 2002;61(Suppl 2):ii70–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bourgoin AF, Nuskey B. White paper: an outlook on U.S. biosimilar competition. Drugs Today (Barc). 2013;49(6):399–410. https://doi.org/10.1358/dot.2013.49.6.2012938.

    Article  CAS  Google Scholar 

  49. Chama Borges Luz T, Garcia Serpa Osorio-de-Castro C, Magarinos-Torres R, Wettermark B. Trends in medicines procurement by the Brazilian federal government from 2006 to 2013. PLoS One. 2017;12(4):e0174616. https://doi.org/10.1371/journal.pone.0174616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tsuruta LR, Lopes dos Santos M, Moro AM. Biosimilars advancements: moving on to the future. Biotechnol Prog. 2015;31(5):1139–49. https://doi.org/10.1002/btpr.2066.

    Article  PubMed  CAS  Google Scholar 

  51. Ministry of Health of the Brazilian Government 2017. http://u.saude.gov.br/index.php/o-ministerio/principal/secretarias/sctie/pdp. Accessed 19 Sept 2017.

  52. Brandao CM, Guerra AA Jr, Cherchiglia ML, Andrade EI, Almeida AM, da Silva GD, et al. Expenses of the Brazilian Ministry of Health for high-cost drugs: a demographic and clinical analysis. Value Health. 2011;14(5 Suppl 1):S71–7. https://doi.org/10.1016/j.jval.2011.05.028.

    Article  PubMed  Google Scholar 

  53. da Mota LM, Cruz BA, Brenol CV, Pereira IA, Rezende-Fronza LS, Bertolo MB, et al. 2012 Brazilian Society of Rheumatology Consensus for the treatment of rheumatoid arthritis. Rev Bras Reumatol. 2012;52(2):152–74.

    Article  PubMed  Google Scholar 

  54. Luchese MD, Bertolini SR, Moro AM, Larentis AL. Dependência tecnológica na produção de imunobiológicos no Brasil: transferência de tecnologia versus pesquisa nacional. Universidade e Sociedade. 2017;59:46–59.

    Google Scholar 

  55. Serpieri F, Inocencio A, de Oliveira JM, Pimenta AA Jr, Garbuio A, Kalil J, et al. Comparison of humanized IgG and FvFc anti-CD3 monoclonal antibodies expressed in CHO cells. Mol Biotechnol. 2010;45(3):218–25. https://doi.org/10.1007/s12033-010-9269-2.

    Article  PubMed  CAS  Google Scholar 

  56. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119(2):203–10.

    Article  PubMed  CAS  Google Scholar 

  57. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  PubMed  CAS  Google Scholar 

  58. Bevilacqua MP, Nelson RM, Mannori G, Cecconi O. Endothelial-leukocyte adhesion molecules in human disease. Annu Rev Med. 1994;45:361–78. https://doi.org/10.1146/annurev.med.45.1.361.

    Article  PubMed  CAS  Google Scholar 

  59. Polchow B, Kebbel K, Schmiedeknecht G, Reichardt A, Henrich W, Hetzer R, et al. Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for future cell banks. J Transl Med. 2012;10:98. https://doi.org/10.1186/1479-5876-10-98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zeller I, Wiedemann D, Schwaiger S, Stelzmuller M, Kreutmayer S, Leberfing O, et al. Inhibition of cell surface expression of endothelial adhesion molecules by ursolic acid prevents intimal hyperplasia of venous bypass grafts in rats. Eur J Cardiothorac Surg. 2012;42(5):878–84. https://doi.org/10.1093/ejcts/ezs128.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14. https://doi.org/10.4161/19420862.2015.989042.

    Article  PubMed  CAS  Google Scholar 

  62. Monteiro RDC, Zanini AC. Análise de custo do tratamento medicamentoso da artrite reumatóide. Braz J Pharm Sci. 2008;44(1).

  63. AbbVie’s revenue from top product Humira from 2011 to 2016 (in million U.S. dollars). Statista, The Statistics Portal. 2017. https://www.statista.com/statistics/318206/revenue-of-humira/. Accessed 20 Jul 2017.

  64. Dharshanan S, Chong H, Hung CS, Zamrod Z, Kamal N. Rapid automated selection of mammalian cell line secreting high level of humanized monoclonal antibody using Clone Pix FL system and the correlation between exterior median intensity and antibody productivity. Electron J Biotechnol. 2011;14(2). https://doi.org/10.2225/vol14-issue2-fulltext-7.

  65. Dharshanan S, Hung CS. Screening and subcloning of high producer transfectomas using semisolid media and automated colony picker. Methods Mol Biol. 2014;1131:105–12. https://doi.org/10.1007/978-1-62703-992-5_7.

    Article  PubMed  CAS  Google Scholar 

  66. Roy G, Miro-Quesada G, Zhuang L, Martin T, Zhu J, Wu H, et al. Sequential screening by ClonePix FL and intracellular staining facilitate isolation of high producer cell lines for monoclonal antibody manufacturing. J Immunol Methods. 2017;451:100–10. https://doi.org/10.1016/j.jim.2017.08.012.

    Article  PubMed  CAS  Google Scholar 

  67. Hou JJ, Hughes BS, Smede M, Leung KM, Levine K, Rigby S, et al. High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. New Biotechnol. 2014;31(3):214–20. https://doi.org/10.1016/j.nbt.2014.02.002.

    Article  CAS  Google Scholar 

  68. Tsuruta LR, Lopes Dos Santos M, Yeda FP, Okamoto OK, Moro AM. Genetic analyses of Per.C6 cell clones producing a therapeutic monoclonal antibody regarding productivity and long-term stability. Appl Microbiol Biotechnol. 2016;100(23):10031–41. https://doi.org/10.1007/s00253-016-7841-9.

    Article  PubMed  CAS  Google Scholar 

  69. Yeda FP, dos Santos ML, Tsuruta LR, Horta BB, Inocencio AL, Okamoto OK, et al. Strategies for clone detection, selection and isolation in Per. C6 cells-case for Rebmab100. BMC Proc. 2013;7(Suppl 6):P38. https://doi.org/10.1186/1753-6561-7-S6-P38.

    Article  PubMed Central  Google Scholar 

  70. Pan X, Streefland M, Dalm C, Wijffels RH, Martens DE. Selection of chemically defined media for CHO cell fed-batch culture processes. Cytotechnology. 2017;69(1):39–56. https://doi.org/10.1007/s10616-016-0036-5.

    Article  PubMed  CAS  Google Scholar 

  71. Hu S, Liang S, Guo H, Zhang D, Li H, Wang X, et al. Comparison of the inhibition mechanisms of adalimumab and infliximab in treating tumor necrosis factor alpha-associated diseases from a molecular view. J Biol Chem. 2013;288(38):27059–67. https://doi.org/10.1074/jbc.M113.491530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Salfeld J, Kaymakçalan Z, Tracey D, Roberts A, Kamen R. Generation of fully human anti-TNF antibody D2E7. Arthritis Rheum. 1998;41(9):S57.

    Google Scholar 

  73. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113(16):3716–25. https://doi.org/10.1182/blood-2008-09-179754.

    Article  PubMed  CAS  Google Scholar 

  74. Magnusson SE, Wennerberg E, Matt P, Lindqvist U, Kleinau S. Dysregulated Fc receptor function in active rheumatoid arthritis. Immunol Lett. 2014;162(1 Pt A):200–6. https://doi.org/10.1016/j.imlet.2014.08.016.

    Article  PubMed  CAS  Google Scholar 

  75. van Lent PL, Nabbe K, Blom AB, Holthuysen AE, Sloetjes A, van de Putte LB, et al. Role of activatory Fc gamma RI and Fc gamma RIII and inhibitory Fc gamma RII in inflammation and cartilage destruction during experimental antigen-induced arthritis. Am J Pathol. 2001;159(6):2309–20.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chandrasekharan UM, Siemionow M, Unsal M, Yang L, Poptic E, Bohn J, et al. Tumor necrosis factor alpha (TNF-alpha) receptor-II is required for TNF-alpha-induced leukocyte-endothelial interaction in vivo. Blood. 2007;109(5):1938–44. https://doi.org/10.1182/blood-2006-05-020875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Taubitz A, Schwarz M, Eltrich N, Lindenmeyer MT, Vielhauer V. Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice. PLoS One. 2013;8(7):e68167. https://doi.org/10.1371/journal.pone.0068167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Alvin K, Ye J. Generation of cell lines for monoclonal antibody production. Methods Mol Biol. 2014;1131:263–71. https://doi.org/10.1007/978-1-62703-992-5_17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for José Marcelino de Oliveira for antibody purification and technical support.

Funding

MDL received a PhD fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da Educação). AMM was granted with Productivity Fellowship from CNPq (Conselho Nacional de Pesquisas). The project was financially supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and Fundação Butantan.

Author information

Authors and Affiliations

Authors

Contributions

MDL: project conception, study design, generation of adabut expression vector, generation of stable pools, ClonePix-FL cloning, functional assays, stability study, data analyses, manuscript drafting. MLS: generation of stable pools, ClonePix-FL cloning, data analyses, substantial manuscript drafting and figures preparation. AG: cell culture, biochemical experiments, preparation of reagents. RCT: cell culture, stability study experiments, preparation of reagents. CPM: ELISA assays and analyses. LRT: generation of adabut expression vector, manuscript revision. WQ: establishment and performing of SPR methods for kinetics and titer analysis, manuscript drafting, data statistical analyses. AMM: project supervision, project concept, study design, data analyses, financial support, manuscript drafting and revision. All authors revised the final drafts of the manuscript and approved the final version.

Corresponding author

Correspondence to Ana Maria Moro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchese, M.D., Lopes dos Santos, M., Garbuio, A. et al. A new CHO (Chinese hamster ovary)-derived cell line expressing anti-TNFα monoclonal antibody with biosimilar potential. Immunol Res 66, 392–405 (2018). https://doi.org/10.1007/s12026-018-8997-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-018-8997-4

Keywords

Navigation