Skip to main content
Log in

Follicular lymphoma: in vitro effects of combining lymphokine-activated killer (LAK) cell-induced cytotoxicity and rituximab- and obinutuzumab-dependent cellular cytotoxicity (ADCC) activity

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Follicular lymphoma (FL) is a disease of paradoxes—incurable but with a long natural history. We hypothesized that a combination of lymphokine-activated killer (LAK) cells and monoclonal antibodies might provide a robust synergistic treatment and tested this hypothesis in a phase II clinical trial (NCT01329354). In this trial, in addition to R-CHOP, we alternated the administration of only rituximab with rituximab and autologous LAK cells that were expanded ex vivo. Our objective was to determine the in vitro capability of LAK cells generated from FL patients to produce cytotoxicity against tumor cell lines and to determine rituximab- and obinutuzumab-induced cytotoxicity via antibody-dependent cellular cytotoxicity (ADCC) activity. We analyzed the LAK cell-induced cytotoxicity and rituximab (R)- and obinutuzumab (GA101)-induced ADCC activity. We show that LAK cells generated from FL patients induce cytotoxicity against tumor cell lines. R and GA101 enhance cytolysis through ADCC activity of LAK cells. Impaired LAK cell cytotoxicity and ADCC activity were detected in 50 % of patients. Percentage of NK cells in LAK infusions were correlated with the R- and GA101-induced ADCC. Our results indicate that the combination of R or GA101 and LAK cells should be an option as frontline maintenance therapy in patients with FL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Whiteside TL, Robinson B, June CH, Lotze M. Principles of tumor immunology. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew A, Weyand CM, editors. Clinical immunology. Principles and practice. 4th ed. St. Louis: Elsevier; 2013. p. 925–34.

    Google Scholar 

  2. Herreros B, Sanchez-Agulere A, Piris MA. Lymphoma microenvironment. In: Magrath IT, Bathia K, Boffetta P, Dearden C, Diehl V, Gascoyne RD, Muller-Hermelink HK, Potter M, Rohatiner A, editors. The lymphoid neoplams. 3rd ed. London: Oxford University Press; 2010. p. 1552.

    Chapter  Google Scholar 

  3. Gascoyne RD. Follicular lymphoma. In: Magrath IT, Bathia K, Boffetta P, Dearden C, Diehl V, Gascoyne RD, Muller-Hermelink HK, Potter M, Rohatiner A, editors. The lymphoid neoplams. 3rd edn. London: Oxford University Press; 2010. p. 513.

    Chapter  Google Scholar 

  4. Wang JH, Alt FW, Gostissa M, Murphy M, Alimzhanov MB, Coakley KM, et al. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J Exp Med. 2008;205:3079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. García-Muñoz R, Panizo E, Rodriguez-Otero P, Mugueta-Uriaque MC, Rifon J, Llorente L, et al. Systemic lupus erythematosus and Franklin’s disease: when the somatic mutation mechanism makes a mistake. Rheumatol Oxf. 2008;47:1105–6.

    Article  Google Scholar 

  6. Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122:3424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. García-Muñoz R, Galiacho VR, Lorente L. Immunological aspects in chronic lymphocytic leukemia (CLL) development. Ann Hematol. 2012;91:981–96.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nganga VK, Palmer VL, Naushad H, Kassmeier MD, Anderson DK, Perry GA, et al. Accelerated progression of chronic lymphocytic leukemia in Eμ-TCL1 mice expressing catalytically inactive RAG1. Blood. 2013;121:3855–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. García-Muñoz R, Lorente L. Chronic lymphocytic leukemia: Could immunological tolerance mechanisms be the origin of lymphoid neoplasms? Immunology. 2014;142:536–50.

    Article  PubMed  PubMed Central  Google Scholar 

  10. García-Muñoz R, Panizo C, Bendandi M, Llorente L. Autoimmunity and lymphoma: Is mantle cell lymphoma a mistake of the receptor editing mechanism? Leuk Res. 2009;33:1437–9.

    Article  PubMed  Google Scholar 

  11. García-Muñoz R, Feliu J, Llorente L. The top ten clues to understand the origin of chronic lymphocytic leukemia (CLL). J Autoimmun. 2015;56:81–6.

    Article  PubMed  Google Scholar 

  12. Murphy WJ, Parham P, Miller JS. NK cells—from bench to clinic. Biol Blood Marrow Transplant. 2012;18(1 Suppl):S2–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yokoyama WM. Natural killer cells. In: Paul WE, editor. Fundamental Immunology. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 395–431.

    Google Scholar 

  14. Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer. 1997;79:2320–8.

    Article  CAS  PubMed  Google Scholar 

  15. Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B cell cytotoxicity. Blood. 2010;115:4393–402.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T, et al. Preclinical activity of the type II CD20 antibody GA101(Obinutuzumab) compared with Rituximab and Ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2014;12:2031–42.

    Article  Google Scholar 

  17. Leprevotte E, Ysebaert L, Klein C, Valleron W, Blanc A, Groos E, et al. Endogenous IL-8 acts as a CD16 co-activator for natural killer mediated anti-CD20 B cell depletion in chronic lymphocytic leukemia. Leuk Res. 2013;37:440–6.

    Article  Google Scholar 

  18. de Jong D, Fest T. The microenvironment in follicular lymphoma. Best Pract Res Clin Haematol. 2011;24:135–46.

    Article  PubMed  Google Scholar 

  19. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. New Engl J Med. 2004;351:2159–69.

    Article  CAS  PubMed  Google Scholar 

  20. García-Muñoz R, Izquierdo-Gil A, Muñoz A, Roldan-Galiacho V, Rabasa P, Panizo C. Lymphocyte recovery is impaired in patients with chronic lymphocytic leukemia and indolent non-Hodgkin lymphomas treated with bendamustine plus rituximab. Ann Hematol. 2014;93:1879–87.

    Article  PubMed  Google Scholar 

  21. Pagés F, Galon J, Dieu-Nosjean MC, Tartour E, Sautés-Fridman C, Fridman WH. Immune filtration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29:1093–102.

    Article  PubMed  Google Scholar 

  22. Siddiqui M, Ristow K, Markovic SN, Witzing TE, Haberman TM, Colgan JP, et al. Absolute lymphocyte count predicts overall survival in follicular lymphomas. Br J Haematol. 2006;134:596–601.

    Article  PubMed  Google Scholar 

  23. Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB, Gastineau DA, et al. Early lymphocyte recovery predicts superior survival after autologous stem cell transplantation in non-Hodgkin lymphoma: a prospective study. Biol Blood Marrow Transplant. 2008;14:807–16.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pagés F, Berger A, Camus M, Sanchez Cabo F, Costes A, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353:2654–66.

    Article  PubMed  Google Scholar 

  25. Gascoyne RD. Follicular lymphoma. In: Magrath IT, Bhatia K, Boffetta P, Dearden C, Diehl V, Gascoyne RD, Müller-Hermelink HK, et al., editors. The lymphoid neoplasms. 3rd ed. London: Hodder/Arnold; 2010. p. 513–38.

    Chapter  Google Scholar 

  26. Rawal S, Chu F, Zhang M, Park HJ, Nattamai D, Kannan S, et al. Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment. J Immunol. 2013;190:6681–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gluck WL, Hurst D, Yuen A, Levine AM, Dayton MA, Gockerman JP, et al. Phase I studies of interleukin (IL)-2 and rituximab in B cell non-Hodgkin’s lymphoma: IL-2 mediated natural killer cell expansion correlations with clinical response. Clin Cancer Res. 2004;10:2253–64.

    Article  CAS  PubMed  Google Scholar 

  28. Rudnicka D, Oszmiana A, Flinch DK, Strickland I, Schofield DJ, Lowe DC, et al. Rituximab causes polarization of B cells that augments its therapeutic function in NK-cell mediated antibody-dependent cellular cytotoxicity. Blood. 2013;121:4694–702.

    Article  CAS  PubMed  Google Scholar 

  29. Du J, Lopez-Verges S, Pitcher BN, Johnson J, Jung SH, Zhou L, et al. CALGB 150905 (Alliance): rituximab broadens the antilymphoma response by activating unlicensed NK cells. Cancer Immunol Res. 2014;2:878–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shafer D, Smith MR, Borghaei H, Millenson MM, Li T, Litwin S, et al. Low NK cell counts in peripheral blood are associated with inferior overall survival in patients with follicular lymphoma. Leuk Res. 2013;37:1213–5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rossi G, Marcheselli L, Dondi A, Bottelli C, Tucci A, Luminari S, et al. The use of anthracycline at first-line compared to alkylating agents or nucleoside analogs improves the outcome of salvage treatment after relapse in follicular lymphoma. The Reffoll study by the Fondazione Italiana Linfomi. Am J Hematol. doi:10.1002/ajh.23872.

  32. Salles G, Seymour JF, Offner F, López-Guillermo A, Belada D, Xerri L, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3 randomized controlled trial. Lancet. 2011;377:42–51.

    Article  CAS  PubMed  Google Scholar 

  33. Morschhauser F, Radford J, Van Hoff A, Botto B, Rohatiner AZ, Salles G, et al. 90Yttrium-ibritumomab tiuxetan consolidation of first remission in advances state follicular non-Hodgkin lymphoma: updated results after a median follow-up 7.3 years from the international randomized, phase III first—lineindolent trial. J Clin Oncol. 2013;31:1977–83.

    Article  CAS  PubMed  Google Scholar 

  34. van Besien K, Loberiza RJ, Bajorunaite R, Armitage JO, Bashey A, Burns LJ, et al. Comparison of autologous and allogeneic hematopoietic stem cell transplantation for follicular lymphoma. Blood. 2003;102:3521–9.

    Article  PubMed  Google Scholar 

  35. Inogés S, Rodriguez-Calvillo M, Zavalegui N, López-Díaz de Cerio A, Villanueva H, Soria E, et al. Clinical benefit associated with idiotypic vaccination in patients with follicular lymphoma. J Natl Cancer Inst. 2006;98:1292–301.

    Article  PubMed  Google Scholar 

  36. Weber JS, Yang JC, Topalian SL, Schwartzentruber DJ, White DE, Rosenberg SA. The use of interleukin-2 and lymphokine-activated killer cells for the treatment of patients with non-Hodgkin’s lymphoma. J Clin Oncol. 1992;10:33–40.

    CAS  PubMed  Google Scholar 

  37. Decaup E, Jean C, Laurent C, Gravelle P, Fruchon S, Capilla F, et al. Anti-tumor activity of obinutuzumab and rituximab in a follicular lymphoma 3D model. Blood Cancer J. 2013;3:e131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dalle S, Reslan L, Besseyre de Horts T, Herveau S, Herting F, Plesa A, et al. Preclinical studies on the mechanisms of action and the anti-lymphoma activity of the novel anti-cd20 antibody GA101. Mol Cancer Ther. 2011;10:178–85.

    Article  CAS  PubMed  Google Scholar 

  39. Radford J, Davies A, Cartron G, Morschhauser F, Salles G, Marcus R, et al. Obinutuzumab (GA101) plus CHOP or FC in relapsed/refractory follicular lymphoma: results of the GAUDI study (BO21000). Blood. 2013;122:1137–43.

    Article  CAS  PubMed  Google Scholar 

  40. Salles GA, Morschhauserf F, Solal-Céligny P, Thieblemont C, Lamy T, Tilly H, et al. Obinutuzumab (GA101) in patients with relapsed/refractory indolent non Hodgkin Lymphoma: results from the phase II GAUGUIN study. J Clin Oncol. 2013;31:2920–6.

    Article  CAS  PubMed  Google Scholar 

  41. Beum PV, Lindorfer MA, Taylor RP. Within peripheral blood mononuclear cells, antibody dependent cellular cytotoxicity of Rituximab-opsonized Daudi cells is promoted by NK cells and inhibited by monocytes due to shaving. J Immunol. 2008;181:2916–24.

    Article  CAS  PubMed  Google Scholar 

  42. Jakobisiak M, Janowska-Wieczorek A, Dobaczewska H, Kantoch M, Marczak M, Oblakowski P, et al. Decreased antibody-dependent cellular cytotoxicity in various types of leukaemia in man. Scan J Haematol. 1981;27:181–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Roche Pharma for generously providing the anti-CD20 (GA101) antibody. This work was supported by the Spanish Ministry of Health and Social Politics (Grant Number TRA-112). We also thank Julie Chaccour for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Panizo.

Ethics declarations

Conflict of interest

The authors have no financial conflict of interest.

Additional information

Ricardo García-Muñoz and Ascensión López-Díaz-de-Cerio have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Muñoz, R., López-Díaz-de-Cerio, A., Feliu, J. et al. Follicular lymphoma: in vitro effects of combining lymphokine-activated killer (LAK) cell-induced cytotoxicity and rituximab- and obinutuzumab-dependent cellular cytotoxicity (ADCC) activity. Immunol Res 64, 548–557 (2016). https://doi.org/10.1007/s12026-015-8747-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8747-9

Keywords

Navigation