Skip to main content
Log in

SLAP deficiency increases TCR avidity leading to altered repertoire and negative selection of cognate antigen-specific CD8+ T cells

  • Immunology in Colorado
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

How T cell receptor (TCR) avidity influences CD8+ T cell development and repertoire selection is not yet fully understood. To fill this gap, we utilized Src-like adaptor protein (SLAP)-deficient mice as a tool to increase TCR avidity on double positive (DP) thymocytes. We generated SLAP−/− mice with the transgenic MHC class I-restricted TCR (OT-1) and SLAP−/− Vβ5 mice, expressing only the β-chain of the TCR OT-1 transgene, to examine the effects of increased TCR surface levels on CD8+ T cell development and repertoire selection. In comparing SLAP−/− OT-1 and Vβ5 mice with wild-type controls, we performed compositional analysis and assessed thymocyte signaling by measuring CD5 levels. In addition, we performed tetramer and compositional staining to measure affinity for the cognate antigen, ovalbumin (OVA) peptide, presented by MHC. Furthermore, we quantified differences in α-chain repertoire in SLAP−/− Vβ5 mice. We have found that SLAP−/− OT-1 mice have fewer CD8+ thymocytes but have increased CD5 expression. SLAP−/− OT-1 mice have fewer DP thymocytes expressing Vα2, signifying increased endogenous α-chain rearrangement, and more non-OVA-specific CD8+ splenocytes upon tetramer staining. Our data demonstrate that SLAP−/− Vβ5 mice also have fewer OVA-specific cells and increased Vα2 usage in the peripheral Vβ5 CD8+ T cells that were non-OVA-specific, demonstrating differences in α-chain repertoire. These studies provide direct evidence that increased TCR avidity in DP thymocytes enhances CD8+ T cell negative selection deleting thymocytes with specificity for cognate antigen, an antigen the mature T cells may never encounter. Collectively, these studies provide new insights into how TCR avidity during CD8+ T cell development influences repertoire selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jameson SC, Bevan MJ. T-cell selection. Curr Opin Immunol. 1998;10(2):214–9.

    Article  PubMed  CAS  Google Scholar 

  2. Marrack P, Hannum C, Harris M, Haskins K, Kubo R, Pigeon M, Shimonkevitz R, White J, Kappler J. Antigen-specific, major histocompatibility complex-restricted T cell receptors. Immunol Rev. 1983;76:131–45.

    Article  PubMed  CAS  Google Scholar 

  3. Morris GP, Allen PM. How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol. 2012;13(2):121–8.

    Article  PubMed  CAS  Google Scholar 

  4. Anderton SM, Wraith DC. Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol. 2002;2(7):487–98.

    Article  PubMed  CAS  Google Scholar 

  5. Takahama Y, Nitta T, Mat Ripen A, Nitta S, Murata S, Tanaka K. Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin Immunol. 2010;22(5):287–93.

    Article  PubMed  CAS  Google Scholar 

  6. Fink PJ, McMahan CJ. Lymphocytes rearrange, edit and revise their antigen receptors to be useful yet safe. Immunol Today. 2000;21(11):561–6.

    Article  PubMed  CAS  Google Scholar 

  7. Sosinowski T, Killeen N, Weiss A. The Src-like adaptor protein downregulates the T cell receptor on CD4+CD8+ thymocytes and regulates positive selection. Immunity. 2001;15(3):457–66.

    Article  PubMed  CAS  Google Scholar 

  8. Dragone LL, Shaw LA, Myers MD, Weiss A. SLAP, a regulator of immunoreceptor ubiquitination, signaling and trafficking. Immunol Rev. 2009;232(1):218–28.

    Article  PubMed  CAS  Google Scholar 

  9. Myers MD, Dragone LL, Weiss A. Src-like adaptor protein down-regulates T cell receptor (TCR)-CD3 expression by targeting TCR zeta for degradation. J Cell Biol. 2005;170(2):285–94.

    Article  PubMed  CAS  Google Scholar 

  10. Myers MD, Sosinowski T, Dragone LL, White C, Band H, Gu H, Weiss A. Src-like adaptor protein regulates TCR expression on thymocytes by linking the ubiquitin ligase c-Cbl to the TCR complex. Nat Immunol. 2006;7(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  11. Peterson LK, Shaw LA, Joetham A, Sakaguchi S, Gelfand EW, Dragone LL. SLAP deficiency enhances number and function of regulatory T cells preventing chronic autoimmune arthritis in SKG mice. J Immunol. 2011;186(4):2273–81.

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe N, Arase H, Onodera M, Ohashi PS, Saito T. The quantity of TCR signal determines positive selection and lineage commitment of T cells. J Immunol. 2000;165(11):6252–61.

    PubMed  CAS  Google Scholar 

  13. Mariathasan S, Zakarian A, Bouchard D, Michie AM, Zúñiga-Pflücker JC, Ohashi PS. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. J Immunol. 2001;167(9):4966–73.

    PubMed  CAS  Google Scholar 

  14. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR. T cell receptor antagonist peptides induce positive selection. Cell. 1994;76(1):17–27.

    Article  PubMed  CAS  Google Scholar 

  15. Fink PJ, Swan K, Turk G, Moore MW, Carbone FR. Both intrathymic and peripheral selection modulate the differential expression of V beta 5 among CD4+ and CD8+ T cells. J Exp Med. 1992;176(6):1733–8.

    Article  PubMed  CAS  Google Scholar 

  16. Dillon SR, Jameson SC, Fink PJ. V beta 5+ T cell receptors skew toward OVA+H-2Kb recognition. J Immunol. 1994;81(3):1790–801.

    Google Scholar 

  17. Dragone LL, Myers MD, White C, Sosinowski T, Weiss A. SRC-like adaptor protein regulates B cell development and function. J Immunol. 2006;176(1):335–45.

    PubMed  CAS  Google Scholar 

  18. Dragone LL, Myers MD, White C, Gadwal S, Sosinowski T, Gu H, Weiss A. Src-like adaptor protein (SLAP) regulates B cell receptor levels in a c-Cbl-dependent manner. Proc Natl Acad Sci USA. 2006;103(48):18202–7.

    Article  PubMed  CAS  Google Scholar 

  19. Kedl RM, Rees WA, Hildeman DA, Schaefer B, Mitchell T, Kappler J, Marrack P. T cells compete for access to antigen-bearing antigen-presenting cells. J Exp Med. 2000;192(8):1105–13.

    Article  PubMed  CAS  Google Scholar 

  20. Gallegos AM, Bevan MJ. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med. 2004;200(8):1039–49.

    Article  PubMed  CAS  Google Scholar 

  21. Boursalian TE, Fink PJ. Mutation in Fas ligand impairs maturation of thymocytes bearing moderate affinity T cell receptors. J Exp Med. 2003;198(2):349–60.

    Article  PubMed  CAS  Google Scholar 

  22. Azzam HS, Grinberg A, Lui K, Shen H, Shores W, Love PE. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J Exp Med. 1998;188(12):2301–11.

    Article  PubMed  CAS  Google Scholar 

  23. Clarke SR, Barnden M, Kurts C, Carbone FR, Miller JF, Heath WR. Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol Cell Biol. 2000;72(2):110–7.

    Article  Google Scholar 

  24. McGargill MA, Derbinski JM, Hogquist KA. Receptor editing in developing T cells. Nat Immunol. 2000;1(4):336–41.

    Article  PubMed  CAS  Google Scholar 

  25. Naramura M, Kole HK, Hu RJ, Gu H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc Natl Acad Sci USA. 1998;95(26):15547–52.

    Article  PubMed  CAS  Google Scholar 

  26. Nakayama T, Singer A, Hsi ED, Samelson LE. Intrathymic signalling in immature CD4+CD8+ thymocytes results in tyrosine phosphorylation of the T-cell receptor zeta chain. Nature. 1989;341(6243):651–4.

    Article  PubMed  CAS  Google Scholar 

  27. van Oers NS, Killeen N, Weiss A. ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR zeta in murine thymocytes and lymph node T cells. Immunity. 1994;1(8):675–85.

    Article  PubMed  Google Scholar 

  28. van Oers NS, Killeen N, Weiss A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J Exp Med. 1996;183(3):1053–62.

    Article  PubMed  Google Scholar 

  29. van Oers NS, Love PE, Shores EW, Weiss A. Regulation of TCR signal transduction in murine thymocytes by multiple TCR zeta-chain signaling motifs. J Immunol. 1998;160(1):163–70.

    PubMed  Google Scholar 

  30. Mingueneau M, Sansoni A, Gregoire C, Roncagalli R, Aguado E, Weiss A, Malissen M, Malissen B. The proline-rich sequence of CD3epsilon controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. Nat Immunol. 2008;9(5):522–32.

    Article  PubMed  CAS  Google Scholar 

  31. Szymczak AL, Workman CJ, Gil D, Dilioglou S, Vignali KM, Palmer E, Vignali DA. The CD3epsilon proline-rich sequence, and its interaction with Nck, is not required for T cell development and function. J Immunol. 2005;175(1):270–5.

    PubMed  CAS  Google Scholar 

  32. Tailor P, Tsai S, Shameli A, Serra P, Wang J, Robbins S, Nagata M, Szymczak-Workman AL, Vignali DA, Santamaria P. The proline-rich sequence of CD3epsilon as an amplifier of low-avidity TCR signaling. J Immunol. 2008;181(1):243–55.

    PubMed  CAS  Google Scholar 

  33. Ouchida R, Yamasaki S, Hikida M, Masuda K, Kawamura K, Wada A, Mochizuki S, Tagawa M, Sakamoto A, Hatano M, Tokuhisa T, Koseki H, Saito T, Kurosaki T, Wang JY. A lysosomal protein negatively regulates surface T cell antigen receptor expression by promoting CD3zeta-chain degradation. Immunity. 2008;29(1):33–43.

    Article  PubMed  CAS  Google Scholar 

  34. Wang H, Holst J, Woo SR, Guy C, Bettini M, Wang Y, Shafer A, Naramura M, Mingueneau M, Dragone LL, Hayes SM, Malissen B, Band H, Vignali DA. Tonic ubiquitylation controls T-cell receptor: CD3 complex expression during T-cell development. EMBO J. 2010;29(7):1285–98.

    Article  PubMed  CAS  Google Scholar 

  35. Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, Sakihama T, Matsutani T, Negishi I, Nakatsuru S, Sakaguchi S. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature. 2003;426(6965):454–60.

    Article  PubMed  CAS  Google Scholar 

  36. Sebzda E, Mariathasan S, Ohteki T, Jones R, Bachmann MF, Ohashi PS. Selection of the T cell repertoire. Annu Rev Immunol. 1999;17:829–74.

    Article  PubMed  CAS  Google Scholar 

  37. Hogquist KA, Tomlinson AJ, Kieper WC, McGargill MA, Hart MC, Naylor S, Jameson SC. Identification of a naturally occurring ligand for thymic positive selection. Immunity. 1997;6(4):389–99.

    Article  PubMed  CAS  Google Scholar 

  38. Scott-Browne JP, White J, Kappler JW, Gapin L, Marrack P. Germline-encoded amino acids in the alphabeta T-cell receptor control thymic selection. Nature. 2009;458(7241):1043–6.

    Article  PubMed  CAS  Google Scholar 

  39. Huseby ES, White J, Crawford F, Vass T, Becker D, Pinilla C, Marrack P, Kappler JW. How the T cell repertoire becomes peptide and MHC specific. Cell. 2005;122(2):246–60.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank E. Treacy for technical assistance and P. Marrack for critical reading of the manuscript. The authors also thank Pamela Fink for generously donating B6 Vβ5 mice. This work was supported by an NIH T32 Grant AI07405 (S.F.F.), an Easton M. Crawford Charitable Lead Unitrust Postdoctoral Fellowship (L.K.P.), and a Within Our Reach grant from the American College of Rheumatology (L.L.D.).

Conflict of interest

The authors have no conflicting financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard L. Dragone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friend, S.F., Peterson, L.K., Kedl, R.M. et al. SLAP deficiency increases TCR avidity leading to altered repertoire and negative selection of cognate antigen-specific CD8+ T cells. Immunol Res 55, 116–124 (2013). https://doi.org/10.1007/s12026-012-8354-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8354-y

Keywords

Navigation