Skip to main content
Log in

Taking inflammatory bowel disease up a Notch

  • Immunology at Mount Sinai
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The epithelium of the gastrointestinal tract, which represents the largest surface area of the body, is constantly exposed to the contents of its surrounding environment. The intestinal epithelium forms barriers that are essential in maintaining equilibrium within the human body. This barrier supports nutrient and water transport while preventing microbial invasion. Intestinal epithelial cells (IECs) sit at the interface between an antigen-rich lumen and a lymphocyte-rich lamina propria (LP). IECs have the capability to discriminate between “peaceful” and “harmful” antigens. The epithelium is constantly sampling luminal contents and making molecular adjustments accordingly. These molecular changes influence the actions of innate and adaptive immune cells. The crosstalk that occurs between the epithelium and the immune compartments serves to maintain intestinal homeostasis. A better understanding of the nature of the interactions between normal LP lymphocytes (LPLs) and IECs will ultimately provide insights into the defects occurring in inflammatory bowel disease patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dahan S, et al. Epithelial: lamina propria lymphocyte interactions promote epithelial cell differentiation. Gastroenterology. 2008;134(1):192–203.

    Article  PubMed  CAS  Google Scholar 

  2. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    Article  PubMed  Google Scholar 

  3. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33.

    Article  PubMed  CAS  Google Scholar 

  4. Schroder N, Gossler A. Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns. 2002;2(3–4):247–50.

    Article  PubMed  CAS  Google Scholar 

  5. Yang Q, et al. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294(5549):2155–8.

    Article  PubMed  CAS  Google Scholar 

  6. Hermiston ML, Green RP, Gordon JI. Chimeric-transgenic mice represent a powerful tool for studying how the proliferation and differentiation programs of intestinal epithelial cell lineages are regulated. Proc Natl Acad Sci USA. 1993;90(19):8866–70.

    Article  PubMed  CAS  Google Scholar 

  7. Conlon RA, Reaume AG, Rossant J. Notch1 is required for the coordinate segmentation of somites. Development. 1995;121(5):1533–45.

    PubMed  CAS  Google Scholar 

  8. Huppert SS, et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature. 2000;405(6789):966–70.

    Article  PubMed  CAS  Google Scholar 

  9. Katoh M. Notch signaling in gastrointestinal tract (review). Int J Oncol. 2007;30(1):247–51.

    PubMed  CAS  Google Scholar 

  10. Gersemann M, et al. Differences in goblet cell differentiation between Crohn’s disease and ulcerative colitis. Differentiation. 2009;77(1):84–94.

    Article  PubMed  CAS  Google Scholar 

  11. Zheng X, et al. Suppression of hath1 gene expression directly regulated by hes1 via notch signaling is associated with goblet cell depletion in ulcerative colitis. Inflamm Bowel Dis. 2011;17(11):2251–60.

    Article  PubMed  Google Scholar 

  12. Dahan S, et al. Notch-1 signaling regulates intestinal epithelial barrier function, through interaction with CD4+ T cells, in mice and humans. Gastroenterology. 2011;140(2):550–9.

    Article  PubMed  CAS  Google Scholar 

  13. Furuse M, et al. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141(7):1539–50.

    Article  PubMed  CAS  Google Scholar 

  14. Furuse M, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6 Pt 2):1777–88.

    Article  PubMed  CAS  Google Scholar 

  15. Mandell KJ, Parkos CA. The JAM family of proteins. Adv Drug Deliv Rev. 2005;57(6):857–67.

    Article  PubMed  CAS  Google Scholar 

  16. Citi S, et al. Cingulin, a new peripheral component of tight junctions. Nature. 1988;333(6170):272–6.

    Article  PubMed  CAS  Google Scholar 

  17. Cordenonsi M, et al. Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J Cell Biol. 1999;147(7):1569–82.

    Article  PubMed  CAS  Google Scholar 

  18. Haskins J, et al. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol. 1998;141(1):199–208.

    Article  PubMed  CAS  Google Scholar 

  19. Jesaitis LA, Goodenough DA. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol. 1994;124(6):949–61.

    Article  PubMed  CAS  Google Scholar 

  20. Stevenson BR, et al. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986;103(3):755–66.

    Article  PubMed  CAS  Google Scholar 

  21. Turner JR. ‘Putting the squeeze’ on the tight junction: understanding cytoskeletal regulation. Semin Cell Dev Biol. 2000;11(4):301–8.

    Article  PubMed  CAS  Google Scholar 

  22. Nusrat A, Turner JR, Madara JL. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol. 2000;279(5):G851–7.

    PubMed  CAS  Google Scholar 

  23. Wainwright MS, et al. Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment. Proc Natl Acad Sci USA. 2003;100(10):6233–8.

    Article  PubMed  CAS  Google Scholar 

  24. Prasad S, et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest. 2005;85(9):1139–62.

    Article  PubMed  CAS  Google Scholar 

  25. Weber CR, et al. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest. 2008;88(10):1110–20.

    Article  PubMed  CAS  Google Scholar 

  26. Zeissig S, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson JM, Van Itallie CM. Tight junctions. Current biology : CB. 2008;18(20):R941–3.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harbor Perspect Biol. 2009;1(2):a002584.

    Article  Google Scholar 

  29. Shao L, Kamalu O, Mayer L. Non-classical MHC class I molecules on intestinal epithelial cells: mediators of mucosal crosstalk. Immunol Rev. 2005;206:160–76.

    Article  PubMed  CAS  Google Scholar 

  30. Allez M, et al. Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells. Gastroenterology. 2002;123(5):1516–26.

    Article  PubMed  Google Scholar 

  31. Allez M, et al. Activation of a unique population of CD8(+) T cells by intestinal epithelial cells. Ann N Y Acad Sci. 2004;1029:22–35.

    Article  PubMed  CAS  Google Scholar 

  32. Kuhn R, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74.

    Article  PubMed  CAS  Google Scholar 

  33. Kerneis S, et al. Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science. 1997;277(5328):949–52.

    Article  PubMed  CAS  Google Scholar 

  34. Chen Y, et al. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Nat Acad Sci USA. 2002;99(22):14338–43.

    Article  PubMed  CAS  Google Scholar 

  35. Komano H, et al. Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells. Proc Nat Acad Sci USA. 1995;92(13):6147–51.

    Article  PubMed  CAS  Google Scholar 

  36. Brauchle M, et al. Keratinocyte growth factor is highly overexpressed in inflammatory bowel disease. Am J Pathol. 1996;149(2):521–9.

    PubMed  CAS  Google Scholar 

  37. Finch PW, et al. Increased expression of keratinocyte growth factor messenger RNA associated with inflammatory bowel disease. Gastroenterology. 1996;110(2):441–51.

    Article  PubMed  CAS  Google Scholar 

  38. Pull SL, et al. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA. 2005;102(1):99–104.

    Article  PubMed  CAS  Google Scholar 

  39. Cecchini MG, et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development. 1994;120(6):1357–72.

    PubMed  CAS  Google Scholar 

  40. Su L, et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology. 2009;136(2):551–63.

    Article  PubMed  CAS  Google Scholar 

  41. Dotan I, et al. Intestinal epithelial cells from inflammatory bowel disease patients preferentially stimulate CD4+ T cells to proliferate and secrete interferon-gamma. Am J Physiol Gastrointest Liver Physiol. 2007;292(6):G1630–40.

    Article  PubMed  CAS  Google Scholar 

  42. Kraus TA, et al. Failure to induce oral tolerance in Crohn’s and ulcerative colitis patients: possible genetic risk. Ann N Y Acad Sci. 2004;1029:225–38.

    Article  PubMed  CAS  Google Scholar 

  43. Kraus TA, et al. Failure to induce oral tolerance to a soluble protein in patients with inflammatory bowel disease. Gastroenterology. 2004;126(7):1771–8.

    Article  PubMed  CAS  Google Scholar 

  44. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17.

    Article  PubMed  CAS  Google Scholar 

  45. Shroyer NF, et al. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev. 2005;19(20):2412–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Crohn’s and Colitis Foundation of America (CCFA) (2442).

Conflict of interest

The author declares that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Dahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laitman, L.E., Dahan, S. Taking inflammatory bowel disease up a Notch. Immunol Res 54, 69–74 (2012). https://doi.org/10.1007/s12026-012-8314-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8314-6

Keywords

Navigation