Skip to main content

Advertisement

Log in

Recognizing and reversing the immunosuppressive tumor microenvironment of head and neck cancer

  • Immunology at Mount Sinai
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The estimated annual incidence of oral cavity and pharyngeal cancer is 39,000 in the United States and 260,000 cases worldwide. Despite significant advances in surgery, chemotherapy and radiotherapy, the 5-year survival rate for locally advanced head and neck tumors remains at 50 %. With further intensification of existing treatment limited by the already significant morbidity of multi-modality treatment, there is a clear need for novel therapeutic strategies [1]. Accumulating evidence suggests that the tumor microenvironment of head and neck squamous cell carcinoma (HNSCC) is highly immunosuppressive, mediated by soluble and cell-associated inhibitory mediators and recruitment of host immunosuppressive cells. Thus, understanding and reversing the specific mechanisms underlying tumor-mediated immunosuppression in HNSCC is an important approach to generating an effective antitumor immune response, either as a component of immune-based therapy or as a complement to conventional treatment approaches. This article outlines significant immune-suppressive mechanisms in the HNSCC tumor microenvironment and potential approaches to enhancing the antitumor immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Prince A, et al. Head and neck squamous cell carcinoma: new translational therapies. Mt Sinai J Med. 2010;77(6):684–99.

    Article  PubMed  Google Scholar 

  2. Choi HR, et al. Molecular and clinicopathologic comparisons of head and neck squamous carcinoma variants: common and distinctive features of biological significance. Am J Surg Pathol. 2004;28(10):1299–310.

    Article  PubMed  Google Scholar 

  3. Wang X, et al. Intratumor genomic heterogeneity correlates with histological grade of advanced oral squamous cell carcinoma. Oral Oncol. 2006;42(7):740–4.

    Article  PubMed  CAS  Google Scholar 

  4. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol. 2006;1:119–50.

    Article  PubMed  CAS  Google Scholar 

  5. Papadimitrakopoulou VA, et al. Cyclin D1 and p16 alterations in advanced premalignant lesions of the upper aerodigestive tract: role in response to chemoprevention and cancer development. Clin Cancer Res. 2001;7(10):3127–34.

    PubMed  CAS  Google Scholar 

  6. Poeta ML, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552–61.

    Article  PubMed  CAS  Google Scholar 

  7. Ragin CC, et al. 11q13 amplification status and human papillomavirus in relation to p16 expression defines two distinct etiologies of head and neck tumours. Br J Cancer. 2006;95(10):1432–8.

    Article  PubMed  CAS  Google Scholar 

  8. Grulich AE, et al. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59–67.

    Article  PubMed  Google Scholar 

  9. King GN, et al. Increased prevalence of dysplastic and malignant lip lesions in renal-transplant recipients. N Engl J Med. 1995;332(16):1052–7.

    Article  PubMed  CAS  Google Scholar 

  10. van Leeuwen MT, et al. Effect of reduced immunosuppression after kidney transplant failure on risk of cancer: population based retrospective cohort study. BMJ. 2010;340:c570.

    Article  PubMed  Google Scholar 

  11. Vu HL, et al. HPV-induced oropharyngeal cancer, immune response and response to therapy. Cancer Lett. 2010;288(2):149–55.

    Article  PubMed  CAS  Google Scholar 

  12. Ferris RL, Hunt JL, Ferrone S. Human leukocyte antigen (HLA) class I defects in head and neck cancer: molecular mechanisms and clinical significance. Immunol Res. 2005;33(2):113–33.

    Article  PubMed  CAS  Google Scholar 

  13. Meissner M, et al. Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res. 2005;11(7):2552–60.

    Article  PubMed  CAS  Google Scholar 

  14. Albers AE, et al. T cell-tumor interaction directs the development of immunotherapies in head and neck cancer. Clin Dev Immunol. 2010;2010:236378.

    Article  PubMed  CAS  Google Scholar 

  15. Wang S, Chen L. Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses. Microbes Infect. 2004;6(8):759–66.

    Article  PubMed  CAS  Google Scholar 

  16. Pries R, Nitsch S, Wollenberg B. Role of cytokines in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther. 2006;6(9):1195–203.

    Article  PubMed  CAS  Google Scholar 

  17. Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25(3):435–57.

    Article  PubMed  CAS  Google Scholar 

  18. Mocellin S, et al. The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev. 2004;15(1):61–76.

    Article  PubMed  CAS  Google Scholar 

  19. Brandwein-Gensler M, et al. Oral squamous cell carcinoma: histologic risk assessment, but not margin status, is strongly predictive of local disease-free and overall survival. Am J Surg Pathol. 2005;29(2):167–78.

    Article  PubMed  Google Scholar 

  20. Hosal AS, Unal OF, Ayhan A. Possible prognostic value of histopathologic parameters in patients with carcinoma of the oral tongue. Eur Arch Otorhinolaryngol. 1998;255(4):216–9.

    Article  PubMed  CAS  Google Scholar 

  21. Yan HH, et al. Gr-1+ CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res. 2010;70(15):6139–49.

    Article  PubMed  CAS  Google Scholar 

  22. Yang L, et al. Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6(4):409–21.

    Article  PubMed  CAS  Google Scholar 

  23. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.

    Article  PubMed  CAS  Google Scholar 

  24. Hoffmann TK, et al. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res. 2002;8(8):2553–62.

    PubMed  Google Scholar 

  25. Reichert TE, et al. Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res. 2002;8(10):3137–45.

    PubMed  Google Scholar 

  26. Bian Y et al. Loss of TGF-beta signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene, 2011.

  27. Mantovani A, et al. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

    Article  PubMed  CAS  Google Scholar 

  28. Bronte V, et al. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood. 2000;96(12):3838–46.

    PubMed  CAS  Google Scholar 

  29. Kusmartsev S, et al. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 2004;172(2):989–99.

    PubMed  CAS  Google Scholar 

  30. Sinha P, Clements VK, Ostrand-Rosenberg S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol. 2005;174(2):636–45.

    PubMed  CAS  Google Scholar 

  31. Murdoch C, et al. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31.

    Article  PubMed  CAS  Google Scholar 

  32. Shojaei F, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007;450(7171):825–31.

    Article  PubMed  CAS  Google Scholar 

  33. Serafini P, et al. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68(13):5439–49.

    Article  PubMed  CAS  Google Scholar 

  34. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

    Article  PubMed  CAS  Google Scholar 

  35. Waight JD, et al. Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS ONE. 2011;6(11):e27690.

    Article  PubMed  CAS  Google Scholar 

  36. Lissbrant IF, et al. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol. 2000;17(3):445–51.

    PubMed  CAS  Google Scholar 

  37. Takanami I, Takeuchi K, Kodaira S. Tumor-associated macrophage infiltration in pulmonary adenocarcinoma: association with angiogenesis and poor prognosis. Oncology. 1999;57(2):138–42.

    Article  PubMed  CAS  Google Scholar 

  38. Tsutsui S, et al. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep. 2005;14(2):425–31.

    PubMed  CAS  Google Scholar 

  39. Badoual C, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006;12(2):465–72.

    Article  PubMed  CAS  Google Scholar 

  40. Le QT, et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol. 2005;23(35):8932–41.

    Article  PubMed  CAS  Google Scholar 

  41. Wolf GT, et al. Lymphocyte subpopulations infiltrating squamous carcinomas of the head and neck: correlations with extent of tumor and prognosis. Otolaryngol Head Neck Surg. 1986;95(2):142–52.

    PubMed  CAS  Google Scholar 

  42. Rajjoub S, et al. Prognostic significance of tumor-infiltrating lymphocytes in oropharyngeal cancer. Ear Nose Throat J. 2007;86(8):506–11.

    PubMed  Google Scholar 

  43. Uppaluri R, Dunn GP, Lewis JS Jr. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in head and neck cancers. Cancer Immun. 2008;8:16.

    PubMed  Google Scholar 

  44. Bergmann C, et al. T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res. 2008;14(12):3706–15.

    Article  PubMed  CAS  Google Scholar 

  45. Hartmann E, et al. Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res. 2003;63(19):6478–87.

    PubMed  CAS  Google Scholar 

  46. Thiel A, et al. Expression of the T cell receptor alphabeta on a CD123+ BDCA2+ HLA-DR+ subpopulation in head and neck squamous cell carcinoma. PLoS ONE. 2011;6(1):e15997.

    Article  PubMed  CAS  Google Scholar 

  47. Gillison ML. Human papillomavirus-associated head and neck cancer is a distinct epidemiologic, clinical, and molecular entity. Semin Oncol. 2004;31(6):744–54.

    Article  PubMed  Google Scholar 

  48. Hung CF, et al. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther. 2008;8(4):421–39.

    Article  PubMed  CAS  Google Scholar 

  49. van Driel WJ, et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer. 1999;35(6):946–52.

    Article  PubMed  Google Scholar 

  50. Roman LD, et al. A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia. Gynecol Oncol. 2007;106(3):558–66.

    Article  PubMed  CAS  Google Scholar 

  51. Murakami M, Gurski KJ, Steller MA. Human papillomavirus vaccines for cervical cancer. J Immunother. 1999;22(3):212–8.

    Article  PubMed  CAS  Google Scholar 

  52. Chikamatsu K, et al. Generation of anti-p53 cytotoxic T lymphocytes from human peripheral blood using autologous dendritic cells. Clin Cancer Res. 1999;5(6):1281–8.

    PubMed  CAS  Google Scholar 

  53. DeLeo AB. p53-based immunotherapy of cancer. Crit Rev Immunol. 1998;18(1–2):29–35.

    Article  PubMed  CAS  Google Scholar 

  54. Hoffmann TK, et al. Generation of T cells specific for the wild-type sequence p53(264–272) peptide in cancer patients: implications for immunoselection of epitope loss variants. J Immunol. 2000;165(10):5938–44.

    PubMed  CAS  Google Scholar 

  55. Ropke M, et al. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci USA. 1996;93(25):14704–7.

    Article  PubMed  CAS  Google Scholar 

  56. Song GY, et al. An MVA vaccine overcomes tolerance to human p53 in mice and humans. Cancer Immunol Immunother. 2007;56(8):1193–205.

    Article  PubMed  CAS  Google Scholar 

  57. Terlou A, et al. Treatment of vulvar intraepithelial neoplasia with topical imiquimod: seven years median follow-up of a randomized clinical trial. Gynecol Oncol. 2011;121(1):157–62.

    Article  PubMed  CAS  Google Scholar 

  58. van Seters M, et al. Treatment of vulvar intraepithelial neoplasia with topical imiquimod. N Engl J Med. 2008;358(14):1465–73.

    Article  PubMed  Google Scholar 

  59. Gkoulioni V, et al. The efficacy of imiquimod on dysplastic lesions of the oral mucosa: an experimental model. Anticancer Res. 2010;30(7):2891–6.

    PubMed  CAS  Google Scholar 

  60. Sacchi M, et al. Antiproliferative effects of cytokines on squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1991;117(3):321–6.

    Article  PubMed  CAS  Google Scholar 

  61. Cortesina G, et al. Treatment of recurrent squamous cell carcinoma of the head and neck with low doses of interleukin-2 injected perilymphatically. Cancer. 1988;62(12):2482–5.

    Article  PubMed  CAS  Google Scholar 

  62. Mantovani G, et al. Neo-adjuvant chemo-(immuno-)therapy of advanced squamous-cell head and neck carcinoma: a multicenter, phase III, randomized study comparing cisplatin + 5-fluorouracil (5-FU) with cisplatin + 5-FU + recombinant interleukin 2. Cancer Immunol Immunother. 1998;47(3):149–56.

    Article  PubMed  CAS  Google Scholar 

  63. Mattijssen V, et al. Clinical and immunopathological results of a phase II study of perilymphatically injected recombinant interleukin-2 in locally far advanced, nonpretreated head and neck squamous cell carcinoma. J Immunother. 1991;10(1):63–8.

    Article  PubMed  CAS  Google Scholar 

  64. Almand B, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6(5):1755–66.

    PubMed  CAS  Google Scholar 

  65. Cheng P, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med. 2008;205(10):2235–49.

    Article  PubMed  CAS  Google Scholar 

  66. Corzo CA, et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010;207(11):2439–53.

    Article  PubMed  CAS  Google Scholar 

  67. LeCouter J, et al. Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc Natl Acad Sci USA. 2004;101(48):16813–8.

    Article  PubMed  CAS  Google Scholar 

  68. Pan PY, et al. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood. 2008;111(1):219–28.

    Article  PubMed  CAS  Google Scholar 

  69. Nefedova Y, et al. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 2005;65(20):9525–35.

    Article  PubMed  CAS  Google Scholar 

  70. Ozao-Choy J, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69(6):2514–22.

    Article  PubMed  CAS  Google Scholar 

  71. Porta C, et al. Immunological effects of multikinase inhibitors for kidney cancer: a clue for integration with cellular therapies? J Cancer. 2011;2:333–8.

    Article  PubMed  CAS  Google Scholar 

  72. Choong NW, et al. Phase II study of sunitinib malate in head and neck squamous cell carcinoma. Invest New Drugs. 2010;28(5):677–83.

    Article  PubMed  CAS  Google Scholar 

  73. Fountzilas G, et al. A phase II study of sunitinib in patients with recurrent and/or metastatic non-nasopharyngeal head and neck cancer. Cancer Chemother Pharmacol. 2010;65(4):649–60.

    Article  PubMed  CAS  Google Scholar 

  74. Machiels JP, et al. Phase II study of sunitinib in recurrent or metastatic squamous cell carcinoma of the head and neck: GORTEC 2006–01. J Clin Oncol. 2010;28(1):21–8.

    Article  PubMed  CAS  Google Scholar 

  75. Kao J, et al. Phase 1 study of concurrent sunitinib and image-guided radiotherapy followed by maintenance sunitinib for patients with oligometastases: acute toxicity and preliminary response. Cancer. 2009;115(15):3571–80.

    Article  PubMed  CAS  Google Scholar 

  76. Ochoa AC, et al. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13(2 Pt 2):721s–6s.

    Article  PubMed  CAS  Google Scholar 

  77. Sinha P, et al. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 2007;67(9):4507–13.

    Article  PubMed  CAS  Google Scholar 

  78. Talmadge JE, et al. Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol. 2007;7(2):140–51.

    Article  PubMed  CAS  Google Scholar 

  79. Wirth LJ, et al. Phase I study of gefitinib plus celecoxib in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23(28):6976–81.

    Article  PubMed  CAS  Google Scholar 

  80. Kao J, et al. Phase 1 trial of concurrent erlotinib, celecoxib, and reirradiation for recurrent head and neck cancer. Cancer. 2011;117(14):3173–81.

    Article  PubMed  CAS  Google Scholar 

  81. Serafini P, et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203(12):2691–702.

    Article  PubMed  CAS  Google Scholar 

  82. Strauss L, et al. The frequency and suppressor function of CD4+ CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13(21):6301–11.

    Article  PubMed  CAS  Google Scholar 

  83. Josefowicz SZ, LF Lu, AY Rudensky, et al. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol, 2012.

  84. Boucek J, et al. Regulatory T cells and their prognostic value for patients with squamous cell carcinoma of the head and neck. J Cell Mol Med. 2010;14(1–2):426–33.

    Article  PubMed  CAS  Google Scholar 

  85. Cunningham DR. Observations on preprofessional education: is there a “major” difference? ASHA. 1991;33(1):37–9.

    PubMed  CAS  Google Scholar 

  86. Watanabe Y, et al. Tumor-infiltrating lymphocytes, particularly the balance between CD8(+) T cells and CCR4(+) regulatory T cells, affect the survival of patients with oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):744–52.

    Article  PubMed  Google Scholar 

  87. Airoldi M, et al. Ifosfamide in the treatment of head and neck cancer. Oncology. 2003;65(Suppl 2):37–43.

    Article  PubMed  CAS  Google Scholar 

  88. Sistigu A, et al. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol. 2011;33(4):369–83.

    Article  PubMed  CAS  Google Scholar 

  89. Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer–preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol. 2010;37(5):430–9.

    Article  PubMed  CAS  Google Scholar 

  90. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  PubMed  CAS  Google Scholar 

  91. Azad AK, et al. Validation of genetic sequence variants as prognostic factors in early-stage head and neck squamous cell cancer survival. Clin Cancer Res. 2012;18(1):196–206.

    Article  PubMed  CAS  Google Scholar 

  92. Kammerer PW, et al. Association of T-cell regulatory gene polymorphisms with oral squamous cell carcinoma. Oral Oncol. 2010;46(7):543–8.

    Article  PubMed  Google Scholar 

  93. Malaspina TS, et al. Enhanced programmed death 1 (PD-1) and PD-1 ligand (PD-L1) expression in patients with actinic cheilitis and oral squamous cell carcinoma. Cancer Immunol Immunother. 2011;60(7):965–74.

    Article  PubMed  CAS  Google Scholar 

  94. Tsushima F, et al. Predominant expression of B7–H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol. 2006;42(3):268–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. Sikora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, C.C.L., Kao, J. & Sikora, A.G. Recognizing and reversing the immunosuppressive tumor microenvironment of head and neck cancer. Immunol Res 54, 266–274 (2012). https://doi.org/10.1007/s12026-012-8306-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8306-6

Keywords

Navigation