Skip to main content
Log in

Applications of Raman spectroscopy in the analysis of biological evidence

  • Review
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

During the past few decades, Raman spectroscopy has progressed and captivated added attention in the field of science. However, the application of Raman spectroscopy is not limited to the field of forensic science and analytical chemistry; it is one of the emerging spectroscopic techniques, utilized in the field of forensic science which in turn could be a supporting tool in the law and justice system. The advantage of Raman spectroscopy over the other conventional techniques is that it is rapid, reliable, and non-destructive in nature with minimal or no sample preparation. The quantitative and qualitative analysis of evidence from biological and non-biological origins could easily be performed by using Raman spectroscopy. The forensic domain is highly complex with multidisciplinary branches, and therefore a plethora of techniques are utilized for the detection, identification, and differentiation of innumerable pieces of evidence for the purpose of law and justice. Herein, a systematic review is carried out on the application of Raman spectroscopy in the realm of forensic biology and serology considering its usefulness in practical perspectives. This review paper highlights the significance of modern techniques, including micro-Raman spectroscopy, confocal Raman spectroscopy, surface-enhanced Raman spectroscopy, and paper-based surface-enhanced Raman spectroscopy, in the field of Raman spectroscopy. These techniques have demonstrated notable advancements in terms of their applications and capabilities. Furthermore, to comprehensively capture the progress in the development of Raman spectroscopy, all the published papers which could be retrieved from the available databases from the year 2007 to 2022 were incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

These were the following inclusion criteria for this review article: 1. Authors have included papers which could be retrieved from various databases between 2007-2022. 2. Authors have incorporated papers that were available from google scholar, Sci Direct, Scopus, Semantic scholar and Pub med. 3. Papers in other languages except english were not included.

Abbreviations

RS:

Raman spectroscopy

IR :

Infrared spectroscopy

UV-vis:

Ultraviolet-visible spectroscopy

MS:

Mass spectrometry

AS:

Atomic spectroscopy

ATR-FTIR:

Attenuated total reflectance Fourier transform infrared spectroscopy

CFS:

Confocal Raman spectroscopy

SERS:

Surface-enhanced Raman spectroscopy

PLS:

Partial least squares

DA:

Discriminant analysis

PCA:

Principal component analysis

SIMCA:

Soft independent modelling of class analogy

SVM:

Support vector machines

ANN:

Artificial neural networks

LDA:

Linear discriminant analysis

PSERS:

Paper surface–enhanced spectroscopy

DCDRS:

Drop-coating deposition Raman spectroscopy

RMS:

Raman micro-spectroscopy

MRS:

Micro-Raman Spectroscopy

MSP:

Micro-spectrophotometry

SORS:

Spatially offset Raman spectroscopy

SERDS:

Shifted excitation Raman difference spectroscopy

References

  1. Nivette AE, Zahnow R, Aguilar R, Ahven A, Amram S, Ariel B, et al. A global analysis of the impact of COVID-19 stay-at-home restrictions on crime. Nature Human Behav. 2021;5:868–77. https://doi.org/10.1038/s41562-021-01139-z.

    Article  Google Scholar 

  2. Boman JH, Mowen TJ. Global crime trends during COVID-19. Nature Human Behav. 2021;5:821–2. https://doi.org/10.1038/s41562-021-01151-3.

    Article  Google Scholar 

  3. Crime in India 2020. National Crime Records Bureau n.d. https://ncrb.gov.in/en/Crime-in-India-2020. Accessed 2 Mar 2022.

  4. Kathane P, Singh A, Gaur JR, Krishan K. The development, status and future of forensics in India. Forensic Sci Int Rep. 2021;3:100215. https://doi.org/10.1016/J.FSIR.2021.100215.

  5. Weyermann C, Roux C. A different perspective on the forensic science crisis. Forensic Sci Int. 2021;323:110779. https://doi.org/10.1016/J.FORSCIINT.2021.110779.

  6. Eyring MB, Martin P. Spectroscopy in forensic science. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. 2013. https://doi.org/10.1016/B978-0-12-409547-2.05455-X.

  7. Wolstenholme R. Ultraviolet–visible and fluorescence spectroscopy. Analytical Techniques in Forensic Science. 2021:115–43. https://doi.org/10.1002/9781119373421.CH6.

  8. Bartick EG. Applications of vibrational spectroscopy in criminal forensic analysis This is publication number 01‐06 of the Laboratory Division of the Federal Bureau of Investigation. Names of commercial manufacturers are provided for identification only and inclusion does not imply endorsement by the Federal Bureau of Investigation. Handbook Vib Spectrosc. 2001. https://doi.org/10.1002/0470027320.S7003.

  9. Forensic applications of vibrational spectroscopy on screening and characterization of tissues in vibrational spectroscopy in diagnosis and screening. Office of Justice Programs. n.d. https://www.ojp.gov/ncjrs/virtual-library/abstracts/forensic-applications-vibrational-spectroscopy-screening-and. Accessed 26 Nov 2022.

  10. Muro CK, Doty KC, Bueno J, Halámková L, Lednev IK. Vibrational spectroscopy: recent developments to revolutionize forensic science. Anal Chem. 2015;87:306–27. https://doi.org/10.1021/AC504068A.

    Article  CAS  PubMed  Google Scholar 

  11. Muro CK, Doty KC, Bueno J, Halámková L, Lednev IK. Forensic applications of vibrational spectroscopy. Forensic Science: A Multidisciplinary Approach. 2016:5–54. https://doi.org/10.1002/9783527693535.CH2.

  12. Mulvaney SP, Keating CD. Raman spectroscopy. Anal Chem. 2000;72. https://doi.org/10.1021/A10000155.

  13. Ferraro JR, Nakamoto K, Brown CW. Introductory Raman spectroscopy: second edition. Introductory Raman Spectroscopy: Second Edition. 2003:1–434. https://doi.org/10.1016/B978-0-12-254105-6.X5000-8.

  14. Using Raman spectroscopy in forensic science. n.d. https://www.azom.com/article.aspx?ArticleID=11733. Accessed 1 Mar 2022.

  15. Mitsutake H, Poppi RJ, Breitkreitz MC. Raman imaging spectroscopy: history, fundamentals and current scenario of the technique. J Braz Chem Soc. 2019;30:2243–58. https://doi.org/10.21577/0103-5053.20190116.

  16. Juarez I, Kurouski D. Effects of crime scene contaminants on surface-enhanced Raman analysis of hair. J Forensic Sci. 2023;68:113–8. https://doi.org/10.1111/1556-4029.15165.

    Article  CAS  PubMed  Google Scholar 

  17. Bumbrah GS, Sharma RM. Raman spectroscopy – basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci. 2016;6:209–15. https://doi.org/10.1016/J.EJFS.2015.06.001.

    Article  Google Scholar 

  18. De Oliveira Penido CAF, Pacheco MTT, Lednev IK, Silveira L. Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse. J Raman Spectrosc. 2016;47:28–38. https://doi.org/10.1002/JRS.4864.

    Article  Google Scholar 

  19. Doty KC, Lednev IK. Raman spectroscopy for forensic purposes: recent applications for serology and gunshot residue analysis. TrAC Trends Anal Chem. 2018;103:215–22. https://doi.org/10.1016/j.trac.2017.12.003.

    Article  CAS  Google Scholar 

  20. Bueno J, Halámková L, Rzhevskii A, Lednev IK. Raman microspectroscopic mapping as a tool for detection of gunshot residue on adhesive tape. Anal Bioanal Chem. 2018;410:7295–303. https://doi.org/10.1007/S00216-018-1359-1.

    Article  CAS  PubMed  Google Scholar 

  21. López-López M, García-Ruiz C. Infrared and Raman spectroscopy techniques applied to identification of explosives. Undefined. 2014;54:36–44. https://doi.org/10.1016/J.TRAC.2013.10.011.

    Article  Google Scholar 

  22. Mohamad Asri MN, Mat Desa WNS, Ismail D. Raman spectroscopy of ballpoint-pen inks using chemometric techniques. 2016;49:175–85. https://doi.org/10.1080/00450618.2016.1153712.

    Article  Google Scholar 

  23. Braz A, López-López M, Montalvo G, Ruiz CG. Forensic discrimination of inkjet-printed lines by Raman spectroscopy and surface-enhanced Raman spectroscopy. 2014;47:411–20. https://doi.org/10.1080/00450618.2014.982179.

    Article  Google Scholar 

  24. Casadio F, Leona M, Lombardi JR, Van Duyne R. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res. 2010;43:782–91. https://doi.org/10.1021/AR100019Q.

    Article  CAS  PubMed  Google Scholar 

  25. Salahioglu F, Went MJ. Differentiation of lipsticks by Raman spectroscopy. Undefined. 2012;223:148–52. https://doi.org/10.1016/J.FORSCIINT.2012.08.018.

    Article  CAS  Google Scholar 

  26. López-López M, Vaz J, García-Ruiz C. Confocal Raman spectrocopy for the analysis of nail polish evidence. Talanta. 2015;138:155–62. https://doi.org/10.1016/J.TALANTA.2015.02.031.

    Article  Google Scholar 

  27. Buzzini P, Suzuki E. Forensic applications of Raman spectroscopy for the in situ analyses of pigments and dyes in ink and paint evidence. Undefined. 2016;47:16–27. https://doi.org/10.1002/JRS.4818.

    Article  CAS  Google Scholar 

  28. Buzzini P, Massonnet G, Sermier FM. The micro Raman analysis of paint evidence in criminalistics: case studies. J Raman Spectrosc. 2006;37:922–31. https://doi.org/10.1002/JRS.1522.

    Article  CAS  Google Scholar 

  29. Bell SEJ, Stewart SP, Armstrong WJ. Raman spectroscopy for forensic analysis of household and automotive paints. Infrared and Raman Spectroscopy in Forensic Science. 2012:121–35. https://doi.org/10.1002/9781119962328.CH4B.

  30. Zięba-Palus J. Examination of the variation of chemical composition and structure of paint within a car body by FT-IR and Raman spectroscopies. J Mol Struct. 2020;1219:128558. https://doi.org/10.1016/J.MOLSTRUC.2020.128558.

  31. Koo TW, Berger AJ, Itzkan I, Horowitz G, Feld MS. Reagentless blood analysis by near-infrared raman spectroscopy. 2004;1:153–7. https://doi.org/10.1089/152091599317369.

    Article  Google Scholar 

  32. Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK. Raman techniques: fundamentals and frontiers. n.d. https://doi.org/10.1186/s11671-019-3039-2.

  33. Zou Y, Xia P, Yang F, Cao F, Ma K, Mi Z, et al. Whole blood and semen identification using mid-infrared and Raman spectrum analysis for forensic applications. Anal Methods. 2016;8:3763–7. https://doi.org/10.1039/C5AY03337C.

    Article  CAS  Google Scholar 

  34. Sun H, Yu B, Pan X, Zhu X, Liu Z. Recent progress in metal–organic frameworks-based materials toward surface-enhanced Raman spectroscopy. 2022. https://doi.org/10.1080/05704928.2021.2025068.

  35. Han XX, Rodriguez RS, Haynes CL, Ozaki Y, Zhao B. Surface-enhanced Raman spectroscopy. Nat Rev Methods Primers. 2022;1:1–17. https://doi.org/10.1038/s43586-021-00083-6.

    Article  CAS  Google Scholar 

  36. Lavine BK. Chemometrics in forensic science. J Chemom. 2021;35:e3322. https://doi.org/10.1002/CEM.3322.

  37. Chemometrics: statistics and computer application in analytical chemistry. Choice Reviews Online. 1999;37:37–0336–37–0336. https://doi.org/10.5860/CHOICE.37-0336.

  38. Lewis IR, Edwards H. Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line. Boca Raton: CRC Press; 2001. https://doi.org/10.1201/9781420029253.

  39. Kumar R, Sharma V. Chemometrics in forensic science. TrAC Trends Anal Chem. 2018;105:191–201. https://doi.org/10.1016/J.TRAC.2018.05.010.

    Article  CAS  Google Scholar 

  40. Silva CS, Braz A, Pimentel MF. Vibrational spectroscopy and chemometrics in forensic chemistry: critical review, current trends and challenges. J Braz Chem Soc. 2019;30:2259–90. https://doi.org/10.21577/0103-5053.20190140.

  41. Sauzier G, Van Bronswijk W, Lewis SW. Chemometrics in forensic science: approaches and applications. Analyst. 2021;146:2415–48. https://doi.org/10.1039/D1AN00082A.

    Article  CAS  PubMed  Google Scholar 

  42. Li R. Forensic biology: identification and DNA analysis of biological evidence. Forensic Biology: Identification and DNA Analysis of Biological Evidence 2008:1–414. https://doi.org/10.4324/9781420043440/FORENSIC-BIOLOGY-RICHARD-LI.

  43. Shute R. Beyond DNA - the role of biological evidence in sexual assault investigations. National Institute of Justice; 2019. https://nij.ojp.gov/library/publications/beyond-dna-role-biological-evidence-sexual-assault-investigations (accessed June 5, 2023)

  44. He H, Han N, Ji C, Zhao Y, Hu S, Kong Q, et al. Identification of five types of forensic body fluids based on stepwise discriminant analysis. Forensic Sci Int Genet. 2020;48. https://doi.org/10.1016/J.FSIGEN.2020.102337.

  45. Koen WJ, Halkides C, Lott K. Presumptive and confirmatory blood testing. Forensic Science Reform: Protecting the Innocent 2017:239–69. https://doi.org/10.1016/B978-0-12-802719-6.00008-X.

  46. An JH, Shin KJ, Yang WI, Lee HY. Body fluid identification in forensics. BMB Rep. 2012;45:545–53. https://doi.org/10.5483/BMBREP.2012.45.10.206.

    Article  CAS  PubMed  Google Scholar 

  47. Vyas B, Halámková L, Lednev IK. A universal test for the forensic identification of all main body fluids including urine. Forensic Chem. 2020;20:100247. https://doi.org/10.1016/J.FORC.2020.100247.

  48. Sikirzhytskaya A, Sikirzhytski V, Pérez-Almodóvar L, Lednev IK. Raman spectroscopy for the identification of body fluid traces: semen and vaginal fluid mixture. Forensic Chem. 2023:100468. https://doi.org/10.1016/J.FORC.2023.100468.

  49. Boyd S, Bertino MF, Seashols SJ. Raman spectroscopy of blood samples for forensic applications. Forensic Sci Int. 2011;208:124–8. https://doi.org/10.1016/J.FORSCIINT.2010.11.012.

    Article  CAS  PubMed  Google Scholar 

  50. Feine I, Gafny R, Pinkas I. Combination of prostate-specific antigen detection and micro-Raman spectroscopy for confirmatory semen detection. Forensic Sci Int. 2017;270:241–7. https://doi.org/10.1016/J.FORSCIINT.2016.10.012.

    Article  CAS  PubMed  Google Scholar 

  51. Huang Z, Chen X, Chen Y, Feng S, Chen R, Chen J, et al. Raman spectroscopic characterization and differentiation of seminal plasma. 2011;16:110501. https://doi.org/10.1117/1.3650310.

  52. Mclaughlin G. Raman spectroscopic analysis of body fluids: species differentiation and the effect of substrate interference and laser power. State University of New York (SUNY) Albany;2013. https://www.proquest.com/openview/9bc2796053f0e4f2d6bd50f55eb327ca/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed June 5, 2023).

  53. Doty KC, Lednev IK. Differentiation of human blood from animal blood using Raman spectroscopy: a survey of forensically relevant species. Forensic Sci Int. 2018;282:204–10. https://doi.org/10.1016/J.FORSCIINT.2017.11.033.

    Article  CAS  Google Scholar 

  54. Fujihara J, Fujita Y, Yamamoto T, Nishimoto N, Kimura-Kataoka K, Kurata S, et al. Blood identification and discrimination between human and nonhuman blood using portable Raman spectroscopy. Int J Legal Med. 2017;131:319–22. https://doi.org/10.1007/S00414-016-1396-2.

    Article  CAS  PubMed  Google Scholar 

  55. McLaughlin G, Doty KC, Lednev IK. Discrimination of human and animal blood traces via Raman spectroscopy. Forensic Sci Int. 2014;238:91–5. https://doi.org/10.1016/J.FORSCIINT.2014.02.027.

    Article  CAS  PubMed  Google Scholar 

  56. McLaughlin G, Doty KC, Lednev IK. Raman spectroscopy of blood for species identification. Anal Chem. 2014;86:11628–33. https://doi.org/10.1021/AC5026368.

    Article  CAS  PubMed  Google Scholar 

  57. Mistek E, Halámková L, Doty KC, Muro CK, Lednev IK. Race differentiation by Raman spectroscopy of a bloodstain for forensic purposes. Anal Chem. 2016;88:7453–6. https://doi.org/10.1021/ACS.ANALCHEM.6B01173.

    Article  CAS  PubMed  Google Scholar 

  58. Muro CK, Lednev IK. Race differentiation based on Raman spectroscopy of semen traces for forensic purposes. Anal Chem. 2017;89:4344–8. https://doi.org/10.1021/ACS.ANALCHEM.7B00106.

    Article  CAS  PubMed  Google Scholar 

  59. Muro CK, De Souza FL, Lednev IK. Sex determination based on Raman spectroscopy of saliva traces for forensic purposes. Anal Chem. 2016;88:12489–93. https://doi.org/10.1021/ACS.ANALCHEM.6B03988.

    Article  CAS  PubMed  Google Scholar 

  60. Sikirzhytskaya A, Sikirzhytski V, Lednev IK. Determining gender by Raman spectroscopy of a bloodstain. Anal Chem. 2017;89:1486–92. https://doi.org/10.1021/ACS.ANALCHEM.6B02986/SUPPL_FILE/AC6B02986_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  61. Doty KC, Lednev IK. Differentiating donor age groups based on Raman spectroscopy of bloodstains for forensic purposes. ACS Cent Sci. 2018;4:862–7. https://doi.org/10.1021/ACSCENTSCI.8B00198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sikirzhytskaya A, Sikirzhytski V, Lednev IK. Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood. J Biophotonics. 2014;7:59–67. https://doi.org/10.1002/JBIO.201200191.

    Article  CAS  PubMed  Google Scholar 

  63. McLaughlin G, Lednev IK. Potential application of Raman spectroscopy for determining burial duration of skeletal remains. Anal Bioanal Chem. 2011;401:2511–8. https://doi.org/10.1007/S00216-011-5338-Z.

    Article  CAS  PubMed  Google Scholar 

  64. Vandenabeele P, Edwards HGM, Jehlička J. The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem Soc Rev. 2014;43:2628–49. https://doi.org/10.1039/C3CS60263J.

    Article  CAS  PubMed  Google Scholar 

  65. Virkler K, Lednev IK. Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci Int. 2008;181. https://doi.org/10.1016/J.FORSCIINT.2008.08.004.

  66. Sikirzhytski V, Virkler K, Lednev IK. Discriminant analysis of Raman spectra for body fluid identification for forensic purposes. Sensors. 2010;10:2869–84. https://doi.org/10.3390/S100402869.

    Article  CAS  PubMed Central  Google Scholar 

  67. Advanced statistical analysis of Raman spectroscopic data for the identification of body fluid traces: semen and blood mixtures. Google Search. n.d. https://www.google.com/search?q=Advanced+statistical+analysis+of+Raman+spectroscopic+data+for+the+identification+of+body+fluid+traces%3A+Semen+and+blood+mixtures&oq=Advanced+statistical+analysis+of+Raman+spectroscopic+data+for+the+identification+of+body+fluid+traces%3A+Semen+and+blood+mixtures&aqs=chrome.0.69i59j35i39i362l5j69i61l2.330j0j7&sourceid=chrome&ie=UTF-8. Accessed 30 May 2022.

  68. Muro CK, Doty KC, de Souza FL, Lednev IK. Forensic body fluid identification and differentiation by Raman spectroscopy. Forensic Chem. 2016;1:31–8. https://doi.org/10.1016/J.FORC.2016.06.003.

    Article  CAS  Google Scholar 

  69. Body fluid analysis by surface enhanced raman spectroscopy for forensic applications. National Institute of Justice. n.d. https://nij.ojp.gov/library/publications/body-fluid-analysis-surface-enhanced-raman-spectroscopy-forensic-applications. Accessed 28 May 2022.

  70. Virkler K, Lednev IK. Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis. Anal Chem. 2009;81:7773–7. https://doi.org/10.1021/AC901350A.

    Article  CAS  PubMed  Google Scholar 

  71. Burges CJC, Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov. 1998;2:121–67.

    Article  Google Scholar 

  72. Hager E, Farber C, Kurouski D. Forensic identification of urine on cotton and polyester fabric with a hand-held Raman spectrometer. Forensic Chem. 2018;9:44–9. https://doi.org/10.1016/J.FORC.2018.05.001.

    Article  CAS  Google Scholar 

  73. Surface-enhanced Raman spectroscopy for forensic analysis of human saliva. n.d. https://open.bu.edu/handle/2144/23997. Accessed 1 Jun 2022.

  74. Nichols NA, Lednev IK, Nichols NA, Lednev IK. Raman spectroscopy for forensic identification of body fluid traces: method validation for potential false negatives caused by blood-affecting diseases. Am J Analyt Chem. 2022;13:1–8. https://doi.org/10.4236/AJAC.2022.131001.

    Article  CAS  Google Scholar 

  75. De Wael K, Lepot L, Gason F, Gilbert B. In search of blood—detection of minute particles using spectroscopic methods. Forensic Sci Int. 2008;180:37–42. https://doi.org/10.1016/J.FORSCIINT.2008.06.013.

    Article  PubMed  Google Scholar 

  76. McLaughlin G, Sikirzhytski V, Lednev IK. Circumventing substrate interference in the Raman spectroscopic identification of blood stains. Forensic Sci Int. 2013;231:157–66. https://doi.org/10.1016/J.FORSCIINT.2013.04.033.

    Article  CAS  PubMed  Google Scholar 

  77. Sikirzhytskaya A, Sikirzhytski V, Mclaughlin G, Lednev IK. Forensic identification of blood in the presence of contaminations using Raman microspectroscopy coupled with advanced statistics: effect of sand, dust, and soil. J Forensic Sci. 2013;58:1141–8. https://doi.org/10.1111/1556-4029.12248.

    Article  PubMed  Google Scholar 

  78. Doty KC, McLaughlin G, Lednev IK, Raman A. Spectroscopic clock for bloodstain age determination: the first week after deposition. Anal Bioanal Chem. 2016;408:3993–4001. https://doi.org/10.1007/S00216-016-9486-Z.

    Article  CAS  PubMed  Google Scholar 

  79. Gamblin AP, Morgan‐Smith RK. The characteristics of seminal fluid and the forensic tests available to identify it. WIREs Forensic Sci. 2020;2. https://doi.org/10.1002/WFS2.1363.

  80. Mclaughlin G, Lednev IK. In situ identification of semen stains on common substrates via Raman spectroscopy. J Forensic Sci. 2015;60:595–604. https://doi.org/10.1111/1556-4029.12708.

    Article  CAS  PubMed  Google Scholar 

  81. Fikiet MA, Lednev IK. Raman spectroscopic method for semen identification: azoospermia. Talanta. 2019;194:385–9. https://doi.org/10.1016/J.TALANTA.2018.10.034.

    Article  CAS  PubMed  Google Scholar 

  82. Casey T, Mistek E, Halámková L, Lednev IK. Raman spectroscopy for forensic semen identification: method validation vs. environmental interferences. Vib Spectrosc. 2020;109:103065. https://doi.org/10.1016/J.VIBSPEC.2020.103065.

  83. Sujatha G, Muruganandhan J, Vishnu Priya V, Srinivasan MR. Determination of reliability and practicality of saliva as a genetic source in forensic investigation by analyzing DNA yield and success rates: a systematic review. J Oral Maxillofac Surg Med Pathol. 2019;31:218–27. https://doi.org/10.1016/J.AJOMS.2018.12.004.

    Article  Google Scholar 

  84. Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int. 2009;188:1–17. https://doi.org/10.1016/J.FORSCIINT.2009.02.013.

    Article  CAS  PubMed  Google Scholar 

  85. Virkler K, Lednev IK. Forensic body fluid identification: the Raman spectroscopic signature of saliva. Analyst. 2010;135:512–7. https://doi.org/10.1039/B919393F.

    Article  CAS  PubMed  Google Scholar 

  86. Buchan E, Kelleher L, Clancy M, Stanley Rickard JJ, Oppenheimer PG. Spectroscopic molecular-fingerprint profiling of saliva. Anal Chim Acta. 2021;1185:339074. https://doi.org/10.1016/J.ACA.2021.339074.

  87. Dobay A, Haas C, Fucile G, Downey N, Morrison HG, Kratzer A, et al. Microbiome-based body fluid identification of samples exposed to indoor conditions. Forensic Sci Int Genet. 2019;40:105–13. https://doi.org/10.1016/J.FSIGEN.2019.02.010.

    Article  CAS  PubMed  Google Scholar 

  88. Akutsu T, Watanabe K, Fujinami Y, Sakurada K. Applicability of ELISA detection of statherin for forensic identification of saliva. Int J Legal Med. 2010;124:493–8. https://doi.org/10.1007/S00414-009-0391-2.

    Article  PubMed  Google Scholar 

  89. Upadhyay M, Shrivastava P, Verma K, Joshi B. Recent advancements in identification and detection of saliva as forensic evidence: a review. Egypt J Forensic Sci. 2023;13:1–13. https://doi.org/10.1186/S41935-023-00336-3/TABLES/4.

    Article  Google Scholar 

  90. Hardy M, Kelleher L, de Carvalho Gomes P, Buchan E, Chu HOM, Goldberg Oppenheimer P. Methods in Raman spectroscopy for saliva studies – a review. 2021;57:177–233. https://doi.org/10.1080/05704928.2021.1969944.

  91. Ong SY, Wain A, Groombridge L, Grimes E. Forensic identification of urine using the DMAC test: a method validation study. Sci Justice. 2012;52:90–5. https://doi.org/10.1016/J.SCIJUS.2011.07.007.

    Article  CAS  PubMed  Google Scholar 

  92. Dong R, Weng S, Yang L, Liu J. Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines. Anal Chem. 2015;87:2937–44. https://doi.org/10.1021/ACS.ANALCHEM.5B00137/SUPPL_FILE/AC5B00137_SI_001.PDF.

    Article  CAS  Google Scholar 

  93. Han Z, Liu H, Meng J, Yang L, Liu J, Liu J. Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy. Anal Chem. 2015;87:9500–6. https://doi.org/10.1021/ACS.ANALCHEM.5B02899/SUPPL_FILE/AC5B02899_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  94. Doctor EL, McCord B. The application of supported liquid extraction in the analysis of benzodiazepines using surface enhanced Raman spectroscopy. Talanta. 2015;144:938–43. https://doi.org/10.1016/J.TALANTA.2015.07.036.

    Article  CAS  PubMed  Google Scholar 

  95. Nuntawong N, Eiamchai P, Somrang W, Denchitcharoen S, Limwichean S, Horprathum M, et al. Detection of methamphetamine/amphetamine in human urine based on surface-enhanced Raman spectroscopy and acidulation treatments. Sens Actuators B Chem. 2017;239:139–46. https://doi.org/10.1016/J.SNB.2016.07.129.

    Article  CAS  Google Scholar 

  96. Sikirzhytskaya A, Sikirzhytski V, Lednev IK. Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification. Forensic Sci Int. 2012;216:44–8. https://doi.org/10.1016/J.FORSCIINT.2011.08.015.

    Article  CAS  PubMed  Google Scholar 

  97. Aparna R, Shanti Iyer R. Tears and eyewear in forensic investigation-a review. Forensic Sci Int. 2020;306. https://doi.org/10.1016/J.FORSCIINT.2019.110055.

  98. Filik J, Stone N. Raman point mapping of tear ferning patterns. 2008;6853:70–5. https://doi.org/10.1117/12.786441.

    Article  CAS  Google Scholar 

  99. Filik J, Stone N. Analysis of human tear fluid by Raman spectroscopy. Anal Chim Acta. 2008;616:177–84. https://doi.org/10.1016/J.ACA.2008.04.036.

    Article  CAS  PubMed  Google Scholar 

  100. Hu P, Zheng XS, Zong C, Li MH, Zhang LY, Li W, et al. Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. J Raman Spectrosc. 2014;45:565–73. https://doi.org/10.1002/JRS.4499.

    Article  CAS  Google Scholar 

  101. Yokoyama M, Nishimura T, Yamada K, Paper-based OY, Raman spectroscopy for on-site therapeutic drug monitoring. IEEE Healthcare Innovation Conference. HIC. 2014;2014(2014):207–10. https://doi.org/10.1109/HIC.2014.7038911.

    Article  Google Scholar 

  102. Jeong H, Yamada K, Kido M, Yokoyama M, Ohno Y. Paper-based surfaced enhanced Raman spectroscopy for drug level testing with tear fluid. Clinical and Biomedical Spectroscopy and Imaging IV. 2015:95372I. https://doi.org/10.1364/ECBO.2015.95372I.

  103. Camerlingo C, Lisitskiy M, Lepore M, Portaccio M, Montorio D, Del Prete S, et al. Characterization of human tear fluid by means of surface-enhanced Raman spectroscopy. Sensor. 2019;19:1177. https://doi.org/10.3390/S19051177.

  104. Sikirzhytski V, Sikirzhytskaya A, Lednev IK. Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification. Anal Chim Acta. 2012;718:78–83. https://doi.org/10.1016/J.ACA.2011.12.059.

    Article  CAS  PubMed  Google Scholar 

  105. Fang C, Agarwal A, Buddharaju KD, Khalid NM, Salim SM, Widjaja E, et al. DNA detection using nanostructured SERS substrates with rhodamine B as Raman label. Biosens Bioelectron. 2008;24:216–21. https://doi.org/10.1016/J.BIOS.2008.03.032.

    Article  CAS  PubMed  Google Scholar 

  106. Donnelly T, Smith WE, Faulds K, Graham D. Silver and magnetic nanoparticles for sensitive DNA detection by SERS. Chem Commun. 2014;50:12907–10. https://doi.org/10.1039/C4CC06335J.

    Article  CAS  Google Scholar 

  107. Braun G, Seung JL, Dante M, Nguyen TQ, Moskovits M, Reich N. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc. 2007;129:6378–9. https://doi.org/10.1021/JA070514Z/SUPPL_FILE/JA070514ZSI20070423_042212.PDF.

    Article  CAS  Google Scholar 

  108. Barhoumi A, Zhang D, Tam F, Halas NJ. Surface-enhanced raman spectroscopy of DNA. J Am Chem Soc. 2008;130:5523–9. https://doi.org/10.1021/JA800023J/SUPPL_FILE/JA800023J-FILE001.PDF.

    Article  CAS  PubMed  Google Scholar 

  109. Van Lierop D, Larmour IA, Faulds K, Graham D. SERS primers and their mode of action for pathogen DNA detection. Anal Chem. 2013;85:1408–14. https://doi.org/10.1021/AC302254H/SUPPL_FILE/AC302254H_SI_001.PDF.

    Article  PubMed  Google Scholar 

  110. Franklin D. Forensic age estimation in human skeletal remains: current concepts and future directions. Leg Med (Tokyo). 2010;12:1–7. https://doi.org/10.1016/J.LEGALMED.2009.09.001.

    Article  PubMed  Google Scholar 

  111. Miyamori D, Uemura T, Zhu W, Fujikawa K, Nakaya T, Teramukai S, et al. A Raman algorithm to estimate human age from protein structural variations in autopsy skin samples: a protein biological clock. Sci Rep. 2021;11. https://doi.org/10.1038/S41598-021-85371-7.

  112. Ortiz-Herrero L, Uribe B, Armas LH, Alonso ML, Sarmiento A, Irurita J, et al. Estimation of the post-mortem interval of human skeletal remains using Raman spectroscopy and chemometrics. Forensic Sci Int. 2021;329. https://doi.org/10.1016/J.FORSCIINT.2021.111087.

  113. Garagoda Arachchige PS, Hughes JL, Bell LS, Gordon KC, Fraser-Miller SJ. Detection of structural degradation of porcine bone in different marine environments with Raman spectroscopy combined with chemometrics. J Raman Spectrosc. 2022;53:82–94. https://doi.org/10.1002/JRS.6258.

    Article  CAS  Google Scholar 

  114. Falgayrac G, Vitale R, Delannoy Y, Behal H, Penel G, Duponchel L, et al. Critical aspects of Raman spectroscopy as a tool for postmortem interval estimation. Talanta. 2022:123589. https://doi.org/10.1016/J.TALANTA.2022.123589.

  115. Yu K, Xiong H, Wei X, Wu H, Zhang B, Wang G, et al. Chronological age estimation of male occipital bone based on FTIR and Raman microspectroscopy. Bioinorg Chem Appl. 2022;2022. https://doi.org/10.1155/2022/1729131.

  116. Schotsmans EMJ, Wilson AS, Brettell R, Munshi T, Edwards HGM. Raman spectroscopy as a non-destructive screening technique for studying white substances from archaeological and forensic burial contexts. Journal of Raman Spectroscopy. 2014;45:1301–8. https://doi.org/10.1002/JRS.4526.

    Article  CAS  Google Scholar 

  117. Pestle WJ, Brennan V, Sierra RL, Smith EK, Vesper BJ, Cordell GA, et al. Hand-held Raman spectroscopy as a pre-screening tool for archaeological bone. J Archaeol Sci. 2015;58:113–20. https://doi.org/10.1016/J.JAS.2015.03.027.

    Article  CAS  Google Scholar 

  118. Cameron AC. Estimating the post-mortem interval of skeletal remains: a taphonomic approach. THE AUSTRALIAN NATIONAL UNIVERSITY, 2016. https://openresearch-repository.anu.edu.au/bitstream/1885/117019/1/Cameron%20Thesis%202017.

  119. Schotsmans EMJ, Wessling R, McClue WA, Wilson AS, Edwards HGM, Denton J. Histology and Raman spectroscopy of limed human remains from the Rwandan Genocide. J Forensic Leg Med 2020;70. https://doi.org/10.1016/J.JFLM.2020.101895.

  120. Divakar KP. Forensic odontology: the new dimension in dental analysis. Int J Biomed Sci. 2017;13:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Age estimation of teeth with Raman spectrometry - preliminary study. CROSBI. n.d. https://www-bib-irb-hr.translate.goog/750723?_x_tr_sl=hr&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc. Accessed 4 Jun 2022.

  122. Jayachandran S, Aruna P, Preethi M, Yuvaraj M. Ascertaining of age by Raman spectroscopic analysis of apical dentin – a forensic study. J Forensic Dent Sci. 2019;11:11. https://doi.org/10.4103/JFO.JFDS_85_18.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Osmani A, Par M, Škrabić M, Vodanović M, Gamulin O. Principal component regression for forensic age determination using the Raman spectra of teeth. Appl Spectrosc. 2020;74:1473–85. https://doi.org/10.1177/0003702820905903.

    Article  CAS  PubMed  Google Scholar 

  124. Gamulin O, Škrabić M, Serec K, Par M, Baković M, Krajačić M, et al. Possibility of human gender recognition using Raman spectra of teeth. Molecules. 2021;26:3983. https://doi.org/10.3390/MOLECULES26133983.

  125. Al Sekhaneh W, Akkam YH, Kamel G, Drabee A, Popp J. Investigation of ancient teeth using Raman spectroscopy and synchrotron radiation Fourier-transform infrared (SR-µFTIR): mapping and novel method of dating. Dig J Nanomater Biostruct n.d.;16:713–24.

  126. Long DA, Edwards HGM, Farwell DW. The Goodmanham plane: Raman spectroscopic analysis of a Roman ivory artefact: Raman spectroscopic analysis of a Roman ivory artefact. J Raman Spectrosc. 2008;39:322–30. https://doi.org/10.1002/jrs.1949.

    Article  CAS  Google Scholar 

  127. Kumari K, Rao RS, Sarode SC, Sarode GS, Patil S. Raman microspectrometry: An alternative method of age estimation from dentin and cementum. Journal of Clinical and Diagnostic Research 2017;11:ZC11–6. https://doi.org/10.7860/JCDR/2017/31161.10705.

  128. Baide A, Farber C, Krimmer M, Wescott D, Kurouski D. Non-invasive post-mortem interval diagnostics using a hand-held Raman spectrometer. Forensic Chemistry 2020;20:100270. https://doi.org/10.1016/J.FORC.2020.100270.

  129. Moeller MR, Fey P, Sachs H. Hair analysis as evidence in forensic cases. Forensic Sci Int. 1993;63:43–53. https://doi.org/10.1016/0379-0738(93)90258-C.

    Article  CAS  PubMed  Google Scholar 

  130. Bisbing RE. The forensic identification and association of human hair. Forensic Science Handbook: Third Edition. 2017:151–200. https://doi.org/10.4324/9781315119939-3/FORENSIC-IDENTIFICATION-ASSOCIATION-HUMAN-HAIR-RICHARD-BISBING.

  131. Gilbert MTP, Wilson AS, Bunce M, Hansen AJ, Willerslev E, Shapiro B, et al. Ancient mitochondrial DNA from hair. Curr Biol. 2004;14. https://doi.org/10.1016/J.CUB.2004.06.008.

  132. Usman M, Naseer A, Baig Y, Jamshaid T, Shahwar M, Khurshuid S. Forensic toxicological analysis of hair: a review. Egypt J Forensic Sci. 2019;9:1–12. https://doi.org/10.1186/S41935-019-0119-5.

    Article  Google Scholar 

  133. Zhang G, Senak L, Moore DJ. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging. J Biomed Opt. 2011;16:056009. https://doi.org/10.1117/1.3580286.

  134. Pudney PDA, Bonnist EYM, Mutch KJ, Nicholls R, Rieley H, Stanfield S. Confocal raman spectroscopy of whole hairs. Appl Spectrosc. 2013;67:1408–16. https://doi.org/10.1366/13-07086.

    Article  CAS  PubMed  Google Scholar 

  135. Kurouski D, Van Duyne RP. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal Chem. 2015;87:2901–6. https://doi.org/10.1021/AC504405U.

    Article  CAS  PubMed  Google Scholar 

  136. Esparza I, Wang R, Kurouski D. Surface-enhanced Raman analysis of underlaying colorants on redyed hair. Anal Chem. 2019;91:7313–8. https://doi.org/10.1021/ACS.ANALCHEM.9B01021.

    Article  CAS  PubMed  Google Scholar 

  137. dos Santos JD, Edwards HGM, de Oliveira LFC. Raman spectroscopy and electronic microscopy structural studies of Caucasian and Afro human hair. Heliyon. 2019;5:e01582. https://doi.org/10.1016/J.HELIYON.2019.E01582.

  138. Lam SE, Mat Nawi SN, Abdul Sani SF, Khandaker MU, Bradley DA. Raman and photoluminescence spectroscopy analysis of gamma irradiated human hair. Sci Rep. 2021;11. https://doi.org/10.1038/S41598-021-86942-4.

  139. Lepot L, De Wael K, Gason F, Gilbert B. Application of Raman spectroscopy to forensic fibre cases. Sci Justice. 2008;48:109–17. https://doi.org/10.1016/J.SCIJUS.2007.09.013.

    Article  CAS  PubMed  Google Scholar 

  140. Robertson J, Roux C, Wiggins KG. Forensic Examination of Fibres. 3rd ed. Boca Raton: CRC Press; 2017. https://doi.org/10.1201/9781315156583.

  141. Grieve M. The changing face of fibre examinations in forensic science. 2008. https://www.semanticscholar.org/paper/THE-CHANGING-FACE-OF-FIBRE-EXAMINATIONS-IN-FORENSIC-Grieve/197398a3ca421f2c6b48a448cb8d74e5b677e6d6?sort=relevance&citationIntent=methodology

  142. Lepot L, Vanhouche M, Vanden Driessche T, Lunstroot K. Interpol review of fibres and textiles 2019–2022. Forensic Sci Int. 2023;6:100307. https://doi.org/10.1016/J.FSISYN.2022.100307.

  143. Frank RS, Sobol SP. Fibres and their examination in forensic science. 1990:41–125. https://doi.org/10.1007/978-3-642-75186-8_3.

  144. Handbook of Natural Fibres - 2nd Edition n.d. https://shop.elsevier.com/books/handbook-of-natural-fibres/kozlowski/978-0-12-818398-4 (accessed June 5, 2023).

  145. Goodpaster JV, Liszewski EA. Forensic analysis of dyed textile fibers. Anal Bioanal Chem. 2009;394:2009–18. https://doi.org/10.1007/S00216-009-2885-7.

    Article  CAS  PubMed  Google Scholar 

  146. Kavkler K, Demšar A. Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2011;78:740–6. https://doi.org/10.1016/J.SAA.2010.12.006.

    Article  Google Scholar 

  147. dLib.si - Application of FTIR and Raman spectroscopy to qualitative analysis of structural changes in cellulosic fibres. n.d. http://www.dlib.si/details/URN:NBN:SI:doc-XM61NT9J. Accessed 14 Aug 2022.

  148. Massonnet G, Buzzini P, Monard F, Jochem G, Fido L, Bell S, et al. Raman spectroscopy and microspectrophotometry of reactive dyes on cotton fibres: analysis and detection limits. Forensic Sci Int. 2012;222:200–7. https://doi.org/10.1016/J.FORSCIINT.2012.05.025.

    Article  CAS  PubMed  Google Scholar 

  149. Buzzini P, Massonnet G. The discrimination of colored acrylic, cotton, and wool textile fibers using micro-Raman spectroscopy. Part 1: in situ detection and characterization of dyes. J Forensic Sci. 2013;58:1593–600. https://doi.org/10.1111/1556-4029.12298.

  150. Buzzini P, Massonnet G. The analysis of colored acrylic, cotton, and wool textile fibers using micro-Raman spectroscopy. Part 2: comparison with the traditional methods of fiber examination. J Forensic Sci. 2015;60:712–20. https://doi.org/10.1111/1556-4029.12654.

  151. Was-Gubala J, Machnowski W. Application of Raman spectroscopy for differentiation among cotton and viscose fibers dyed with several dye classes. 2014;47:527–35. https://doi.org/10.1080/00387010.2013.820760.

    Article  CAS  Google Scholar 

  152. Wiesheu AC, Anger PM, Baumann T, Niessner R, Ivleva NP. Raman microspectroscopic analysis of fibers in beverages. Anal Methods. 2016;8:5722–5. https://doi.org/10.1039/C6AY01184E.

    Article  CAS  Google Scholar 

  153. Puchowicz D, Cieslak M. Raman spectroscopy in the analysis of textile structures. Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization. 2022. https://doi.org/10.5772/INTECHOPEN.99731.

    Article  Google Scholar 

  154. Puchowicz D, Giesz P, Kozanecki M, Cieślak M. Surface-enhanced Raman spectroscopy (SERS) in cotton fabrics analysis. Talanta. 2019;195:516–24. https://doi.org/10.1016/J.TALANTA.2018.11.059.

    Article  CAS  PubMed  Google Scholar 

  155. Zieba-Palus J, Borusiewicz R, Kunicki M. PRAXIS–combined mu-Raman and mu-XRF spectrometers in the examination of forensic samples. Forensic Sci Int. 2008;175:1–10. https://doi.org/10.1016/J.FORSCIINT.2007.04.230.

    Article  CAS  PubMed  Google Scholar 

  156. Application of FTIR and Raman spectroscopy to qualitative analysis of structural changes in cellulosic fibre. Request PDF. n.d. https://www.researchgate.net/publication/287320210_Application_of_FTIR_and_raman_spectroscopy_to_qualitative_analysis_of_structural_changes_in_cellulosic_fibres. Accessed 30 Nov 2022.

  157. Ziba-Palus J, Ws-Gubała J. An investigation into the use of micro-Raman spectroscopy for the analysis of car paints and single textile fibres. J Mol Struct. 2011;993:127–33. https://doi.org/10.1016/J.MOLSTRUC.2010.12.041.

    Article  Google Scholar 

  158. Was-Gubala J, Starczak R. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry. Appl Spectrosc. 2015;69:296–303. https://doi.org/10.1366/14-07567.

    Article  CAS  PubMed  Google Scholar 

  159. Bianchi F, Riboni N, Trolla V, Furlan G, Avantaggiato G, Iacobellis G, et al. Differentiation of aged fibers by Raman spectroscopy and multivariate data analysis. Talanta. 2016;154:467–73. https://doi.org/10.1016/J.TALANTA.2016.04.013.

    Article  CAS  PubMed  Google Scholar 

  160. Castro MA, Pereira FJ, Aller AJ, Littlejohn D. Raman spectrometry as a screening tool for solvent-extracted azo dyes from polyester-based textile fibres. Polym Test. 2020;91. https://doi.org/10.1016/J.POLYMERTESTING.2020.106765.

  161. Holtkötter H, Schwender K, Wiegand P, Peiffer H, Vennemann M. Improving body fluid identification in forensic trace evidence-construction of an immunochromatographic test array to rapidly detect up to five body fluids simultaneously. Int J Legal Med. 2018;132:83–90. https://doi.org/10.1007/S00414-017-1724-1.

    Article  PubMed  Google Scholar 

  162. Weiss P, Lapkowski M, Legeros RZ, Bouler JM, Jean A, Daculsi G. Fourier-transform infrared spectroscopy study of an organic-mineral composite for bone and dental substitute materials. J Mater Sci Mater Med. 1997;8:621–9. https://doi.org/10.1023/A:1018519419539/METRICS.

    Article  CAS  PubMed  Google Scholar 

  163. Orphanou CM. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci Int. 2015;252:e10–6. https://doi.org/10.1016/J.FORSCIINT.2015.04.020.

    Article  CAS  PubMed  Google Scholar 

  164. Peets P, Leito I, Pelt J, Vahur S. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods. Spectrochim Acta A Mol Biomol Spectrosc. 2017;173:175–81. https://doi.org/10.1016/J.SAA.2016.09.007.

    Article  CAS  PubMed  Google Scholar 

  165. Boll MS, Doty KC, Wickenheiser R, Lednev IK. Differentiation of hair using ATR FT-IR spectroscopy: a statistical classification of dyed and non-dyed hairs. Forensic Chem. 2017;6:1–9. https://doi.org/10.1016/J.FORC.2017.08.001.

    Article  CAS  Google Scholar 

  166. Ubelaker DH, Khosrowshahi H. Estimation of age in forensic anthropology: historical perspective and recent methodological advances. Forensic Sci Res. 2019;4:1. https://doi.org/10.1080/20961790.2018.1549711.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Higgins S, Kurouski D. Surface-enhanced Raman spectroscopy enables highly accurate identification of different brands, types and colors of hair dyes. Talanta. 2023;251:123762. https://doi.org/10.1016/J.TALANTA.2022.123762.

  168. Muehlethaler C, Leona M, Lombardi JR. Review of surface enhanced Raman scattering applications in forensic science. Anal Chem. 2016;88:152–69. https://doi.org/10.1021/ACS.ANALCHEM.5B04131/ASSET/IMAGES/ACS.ANALCHEM.5B04131.SOCIAL.JPEG_V03.

    Article  CAS  PubMed  Google Scholar 

  169. Zapata F, Fernández de la Ossa MÁ, García-Ruiz C. Emerging spectrometric techniques for the forensic analysis of body fluids. TrAC Trends Anal Chem. 2015;64:53–63. https://doi.org/10.1016/J.TRAC.2014.08.011.

  170. Selvius Deroo C, Armitage RA. Direct identification of dyes in textiles by direct analysis in real time-time of flight mass spectrometry. Anal Chem. 2011;83:6924–8. https://doi.org/10.1021/AC201747S.

    Article  CAS  Google Scholar 

  171. Vincenti M, Salomone A, Gerace E, Pirro V. Application of mass spectrometry to hair analysis for forensic toxicological investigations. Mass Spectrom Rev. 2013;32:312–32. https://doi.org/10.1002/MAS.21364.

    Article  CAS  PubMed  Google Scholar 

  172. Yang H, Zhou B, Deng H, Prinz M, Siegel D. Body fluid identification by mass spectrometry. Int J Legal Med. 2013;127:1065–77. https://doi.org/10.1007/S00414-013-0848-1.

    Article  PubMed  Google Scholar 

  173. Achetib N, Falkena K, Swayambhu M, Aalders MCG, van Dam A. Specific fluorescent signatures for body fluid identification using fluorescence spectroscopy. Sci Rep. 2023;13. https://doi.org/10.1038/S41598-023-30241-7.

  174. Siegel JA. Application of fluorescence spectroscopy to forensic science. Forensic Sci Rev. 1996;8:1–11.

    CAS  PubMed  Google Scholar 

  175. Colon LA. Analysis of body fluids: urine, blood, saliva and tears. Handbook of Capillary Electrophoresis Applications. 1997:486–98. https://doi.org/10.1007/978-94-009-1561-9_33.

  176. Park M, Bahng SH, Woo N, Kang SH. Highly sensitive wavelength-dependent nonaqueous capillary electrophoresis for simultaneous screening of various synthetic organic dyes. Talanta. 2016;152:236–43. https://doi.org/10.1016/J.TALANTA.2016.02.009.

    Article  CAS  PubMed  Google Scholar 

  177. Zapata F, Gregório I, García-Ruiz C. Body fluids and spectroscopic techniques in forensics: a perfect match? Undefined. 2016;1. https://doi.org/10.4172/2472-1026.1000101.

  178. Sharma V, Kumar R, Kaur P. Forensic examination of textile fibers using UV-vis spectroscopy combined with multivariate analysis. J Appl Spectrosc. 2019;86:96–100. https://doi.org/10.1007/S10812-019-00787-4/METRICS.

    Article  CAS  Google Scholar 

  179. Barrett JA, Siegel JA, Goodpaster JV. Forensic discrimination of dyed hair color: I. UV-visible microspectrophotometry J Forensic Sci. 2010;55:323–33. https://doi.org/10.1111/J.1556-4029.2009.01306.X.

    Article  CAS  PubMed  Google Scholar 

  180. Kistenev YV, Borisov AV, Samarinova AA, Colón-Rodríguez S, Lednev IK. A novel Raman spectroscopic method for detecting traces of blood on an interfering substrate. Sci Rep. 2023;13:1–15. https://doi.org/10.1038/s41598-023-31918-9.

    Article  CAS  Google Scholar 

  181. Sanchez L, Pant S, Mandadi K, Kurouski D. Raman spectroscopy vs quantitative polymerase chain reaction in early stage huanglongbing diagnostics. Sci Rep. 2020;10:1–10. https://doi.org/10.1038/s41598-020-67148-6.

    Article  CAS  Google Scholar 

  182. Vaskova H. A powerful tool for material identification: Raman spectroscopy. Int J Math Models Methods Appl Sci. 2011;5:1205-1212. https://www.researchgate.net/publication/289037089_A_powerful_tool_for_material_identification_Raman_spectroscopy

  183. Pérez-Jiménez AI, Lyu D, Lu Z, Liu G, Ren B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem Sci. 2020;11:4563–77. https://doi.org/10.1039/D0SC00809E.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sweety Sharma.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Sharma, S. Applications of Raman spectroscopy in the analysis of biological evidence. Forensic Sci Med Pathol (2023). https://doi.org/10.1007/s12024-023-00660-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12024-023-00660-z

Keywords

Navigation