Skip to main content
Log in

A Systematic Review and Meta-Analysis of the Diagnostic Performance of BRAF V600E Immunohistochemistry in Thyroid Histopathology

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Immunohistochemistry (IHC) in evaluating thyroid surgical specimens may facilitate diagnostic and prognostic evaluation, with potential therapeutic implications. We performed a systematic review and meta-analysis examining the analytic validity of IHC in detecting BRAFV600E mutations in thyroid cancer (primary or metastatic). We screened citations from three electronic databases (until December 20, 2018), supplemented by a hand search of authors’ files and cross-references of reviews. Citations and full-text papers were independently reviewed in duplicate, and consensus was achieved on inclusion of papers. Two reviewers independently critically appraised and abstracted data from included papers. Random-effect meta-analyses were conducted for sensitivity and specificity estimates. We reviewed 1499 unique citations and 93 full-text articles. We included 1 systematic review and 30 original articles. The published review (from 2015) needed to be updated as there were multiple subsequent original studies. The pooled sensitivity of IHC in detecting a BRAFV600E mutation was 96.8% (95% confidence interval [CI] at 94.1%, 98.3%) (29 studies, including 2659 BRAFV600E mutant tumors). The IHC pooled specificity was 86.3% (95% CI 80.7%, 90.4%) (28 studies, including 1107 BRAFV600E wild-type specimens). These meta-analyses were subject to statistically significant heterogeneity, partly explained by antibody type (sensitivity and specificity) and tissue/tumor type (specificity). In conclusion, BRAF IHC is highly sensitive and reasonably specific in detecting the BRAFV600E mutation; however, there is some variability in analytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. (2017) Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 317(13):1338–1348. https://doi.org/10.1001/jama.2017.2719.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159(3): 676–690.

    Article  Google Scholar 

  3. Vuong HG, Altibi AM, Abdelhamid AH, Ngoc PU, Quan VD, Tantawi MY, Elfil M, Vu TL, Elgebaly A, Oishi N, Nakazawa T, Hirayama K, Katoh R, Huy NT, Kondo T. (2017) The changing characteristics and molecular profiles of papillary thyroid carcinoma over time: a systematic review. Oncotarget 8(6):10637–10649. https://doi.org/10.18632/oncotarget.12885.

    Article  PubMed  Google Scholar 

  4. Lloyd RV, Osamura RV, Kloppel G, Rosai J, editors. WHO classification of tumors of endocrine organs (4th edition). IARC: Lyon 2017.

  5. Lo MC, Paterson A, Maraka J, Clark R, Goodwill J, Nobes J, Garioch J, Moncrieff M, Rytina E, Igali L. (2016). A UK feasibility and validation study of the VE1 monoclonal antibody immunohistochemistry stain for BRAF-V600E mutations in metastatic melanoma. Br J Cancer 115(2), 223–227. https://doi.org/10.1038/bjc.2016.106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM; QUADAS-2 Group. (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.

    Article  PubMed  Google Scholar 

  7. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, Henry DA. (2017) AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358:j4008.https://doi.org/10.1136/bmj.j4008

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cochran WG. (1954) The combination of estimates from different experiments. Biometrics 101: 101–129.

    Article  Google Scholar 

  9. Higgins JP, Thompson SG, Deeks JJ, Altman DG. (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557–560.https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bürkner PC, Doebler P. (2014) Testing for publication bias in diagnostic meta-analysis: a simulation study. Stat Med 33(18):3061–3067.https://doi.org/10.1002/sim.6177

    Article  PubMed  Google Scholar 

  11. Abd Elmageed ZY, Sholl AB, Tsumagari K, Al-Qurayshi Z, Basolo F, Moroz K, Boulares AH, Friedlander P, Miccoli P, Kandil E. (2017) Immunohistochemistry as an accurate tool for evaluating BRAF-V600E mutation in 130 samples of papillary thyroid cancer. Surgery 161(4):1122–1128.https://doi.org/10.1016/j.surg.2016.06.081.

    Article  PubMed  Google Scholar 

  12. Bullock M, O'Neill C, Chou A, Clarkson A, Dodds T, Toon C, Sywak M, Sidhu SB, Delbridge LW, Robinson BG, Learoyd DL, Capper D, von Deimling A, Clifton-Bligh RJ, Gill AJ. (2012) Utilization of a MAB for BRAF(V600E) detection in papillary thyroid carcinoma. Endocr Relat Cancer 19(6):779–784.https://doi.org/10.1530/ERC-12-0239.

    Article  CAS  PubMed  Google Scholar 

  13. Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G, Pusch S, Mechtersheimer G, Zentgraf H, von Deimling A. (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122(1):11–19. https://doi.org/10.1007/s00401-011-0841-z.

    Article  CAS  PubMed  Google Scholar 

  14. Chen D, Qi W, Zhang P, Zhang Y, Liu Y, Guan H, Wang L. (2018) Investigation of BRAFV600E detection approaches in papillary thyroid carcinoma. Pathol Res Pract 214(2):303–307. https://doi.org/10.1016/j.prp.2017.09.001.

    Article  CAS  PubMed  Google Scholar 

  15. Crescenzi A, Guidobaldi L, Nasrollah N, Taccogna S, Cicciarella Modica DD, Turrini L, Nigri G, Romanelli F, Valabrega S, Giovanella L, Onetti Muda A, Trimboli P. (2014) Immunohistochemistry for BRAF(V600E) antibody VE1 performed in core needle biopsy samples identifies mutated papillary thyroid cancers. Horm Metab Res 46(5):370–374. https://doi.org/10.1055/s-0034-1368700.

    Article  CAS  PubMed  Google Scholar 

  16. da Silva RC, de Paula HS, Leal CB, Cunha BC, de Paula EC, Alencar RC, Meneghini AJ, Silva AM, Gontijo AP, Wastowski IJ, Saddi VA. (2015) BRAF overexpression is associated with BRAF V600E mutation in papillary thyroid carcinomas. Genet Mol Res 14(2):5065–5075. https://doi.org/10.4238/2015.

    Article  PubMed  Google Scholar 

  17. de Biase D, Cesari V, Visani M, Casadei GP, Cremonini N, Gandolfi G, Sancisi V, Ragazzi M, Pession A, Ciarrocchi A, Tallini G. (2014) High-sensitivity BRAF mutation analysis: BRAF V600E is acquired early during tumor development but is heterogeneously distributed in a subset of papillary thyroid carcinomas. J Clin Endocrinol Metab 99(8):E1530–8. https://doi.org/10.1210/jc.2013-4389.

    Article  CAS  PubMed  Google Scholar 

  18. Fisher KE, Neill SG, Ehsani L, Caltharp SA, Siddiqui MT, Cohen C. (2014) Immunohistochemical Investigation of BRAF p.V600E mutations in thyroid carcinoma using 2 separate BRAF antibodies. Appl Immunohistochem Mol Morphol 22(8):562–567. https://doi.org/10.1097/PAI.0b013e3182a2f75f.

    Article  CAS  PubMed  Google Scholar 

  19. Ghossein RA, Katabi N, Fagin JA. (2013) Immunohistochemical detection of mutated BRAF V600E supports the clonal origin of BRAF-induced thyroid cancers along the spectrum of disease progression. J Clin Endocrinol Metab 98(8):E1414–E1421. https://doi.org/10.1210/jc.2013-1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ilie MI, Lassalle S, Long-Mira E, Bonnetaud C, Bordone O, Lespinet V, Lamy A, Sabourin JC, Haudebourg J, Butori C, Guevara N, Peyrottes I, Sadoul JL, Bozec A, Santini J, Capper D, von Deimling A, Emile JF, Hofman V, Hofman P. (2014) Diagnostic value of immunohistochemistry for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma: comparative analysis with three DNA-based assays. Thyroid 24(5):858–866. https://doi.org/10.1089/thy.2013.0302.

    Article  CAS  PubMed  Google Scholar 

  21. Jung YY, Yoo JH, Park ES, Kim MK, Lee TJ, Cho BY, Chung YJ, Kang KH, Ahn HY, Kim HS. (2015) Clinicopathologic correlations of the BRAFV600E mutation, BRAF V600E immunohistochemistry, and BRAF RNA in situ hybridization in papillary thyroid carcinoma. Pathol Res Pract 211(2):162–170.https://doi.org/10.1016/j.prp.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  22. Kim YH, Choi SE, Yoon SO, Hong SW. (2014) A testing algorithm for detection of the B-type Raf kinase V600E mutation in papillary thyroid carcinoma. Hum Pathol 45(7):1483–1488. https://doi.org/10.1016/j.humpath.2014.02.025.

    Article  CAS  PubMed  Google Scholar 

  23. Kim JK, Seong CY, Bae IE, Yi JW, Yu HW, Kim SJ, Won JK, Chai YJ, Choi JY, Lee KE. (2018) Comparison of immunohistochemistry and direct sequencing methods for identification of the BRAF(V600E) mutation in papillary thyroid carcinoma. Ann Surg Oncol 25(6):1775–1781. https://doi.org/10.1245/s10434-018-6460-3.

    Article  PubMed  Google Scholar 

  24. Lin JD, Fu SS, Chen JY, Lee CH, Chau WK, Cheng CW, Wang YH, Lin YF, Fang WF, Tang KT. (2016) Clinical manifestations and gene expression in patients with conventional papillary thyroid carcinoma carrying the BRAF(V600E) mutation and BRAF pseudogene. Thyroid 26(5):691–704. https://doi.org/10.1089/thy.2015.0044.

    Article  CAS  PubMed  Google Scholar 

  25. Lin DM, Javidiparsijani S, Vardouniotis A, Buckingham L, Reddy SB, Gattuso P. (2018) Ectopic thyroid tissue: Immunohistochemistry and molecular analysis. Appl Immunohistochem Mol Morphol 26(10):734–739. https://doi.org/10.1097/PAI.0000000000000515.

    Article  CAS  PubMed  Google Scholar 

  26. Loo E, Khalili P, Beuhler K, Siddiqi I, Vasef MA. (2018) BRAF V600E mutation across multiple tumor types: correlation between DNA-based sequencing and mutation-specific immunohistochemistry. Appl Immunohistochem Mol Morphol 26(10):709–713. https://doi.org/10.1097/PAI.0000000000000516.

    Article  CAS  PubMed  Google Scholar 

  27. Martinuzzi C, Pastorino L, Andreotti V, Garuti A, Minuto M, Fiocca R, Bianchi-Scarrà G, Ghiorzo P, Grillo F, Mastracci L. (2016) A combination of immunohistochemistry and molecular approaches improves highly sensitive detection of BRAF mutations in papillary thyroid cancer. Endocrine 53(3):672–680. https://doi.org/10.1007/s12020-015-0720-9.

    Article  CAS  PubMed  Google Scholar 

  28. McKelvie PA, Chan F, Yu Y, Waring P, Gresshoff I, Farrell S, Williams RA. The prognostic significance of the BRAF V600E mutation in papillary thyroid carcinoma detected by mutation-specific immunohistochemistry. (2013) Pathology 45(7):637–644. https://doi.org/10.1097/PAT.0000000000000008.

    Article  CAS  PubMed  Google Scholar 

  29. Na JI, Kim JH, Kim HJ, Kim HK, Moon KS, Lee JS, Lee JH, Lee KH, Park JT. (2015) VE1 immunohistochemical detection of the BRAF V600E mutation in thyroid carcinoma: a review of its usefulness and limitations. Virchows Arch 467(2):155–168. https://doi.org/10.1007/s00428-015-1773-0.

    Article  CAS  PubMed  Google Scholar 

  30. Oh HS, Kwon H, Park S, Kim M, Jeon MJ, Kim TY, Shong YK, Kim WB, Choi J, Kim WG, Song DE. (2018) Comparison of immunohistochemistry and direct sanger sequencing for detection of the BRAF(V600E) mutation in thyroid neoplasm. Endocrinol Metab (Seoul) 33(1):62–69. https://doi.org/10.3803/EnM.2018.33.1.62.

    Article  CAS  Google Scholar 

  31. Paja Fano M, Ugalde Olano A, Fuertes Thomas E, Oleaga Alday A. Immunohistochemical detection of the BRAF V600E mutation in papillary thyroid carcinoma. Evaluation against real-time polymerase chain reaction. (2017) Endocrinol Diabetes Nutr 64(2):75–81. https://doi.org/10.1016/j.endinu.2016.12.004.

    Article  PubMed  Google Scholar 

  32. Qiu T, Lu H, Guo L, Huang W, Ling Y, Shan L, Li W, Ying J, Lv N. (2015) Detection of BRAF mutation in Chinese tumor patients using a highly sensitive antibody immunohistochemistry assay. Sci Rep 5:9211. https://doi.org/10.1038/srep09211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Routhier CA, Mochel MC, Lynch K, Dias-Santagata D, Louis DN, Hoang MP. (2013) Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAF V600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas. Hum Pathol 44(11):2563–2570. https://doi.org/10.1016/j.humpath.2013.06.018.

    Article  CAS  PubMed  Google Scholar 

  34. Rushton S, Burghel G, Wallace A, Nonaka D. (2016) Immunohistochemical detection of BRAF V600E mutation status in anaplastic thyroid carcinoma. Histopathology 69(3):524–526. https://doi.org/10.1111/his.12964.

    Article  PubMed  Google Scholar 

  35. Sun J, Zhang J, Lu J, Gao J, Lu T, Ren X, Duan H, Liang Z. (2015) Immunohistochemistry is highly sensitive and specific for detecting the BRAF V600E mutation in papillary thyroid carcinoma. Int J Clin Exp Pathol 8(11):15072–15078.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Szymonek M, Kowalik A, Kopczyński J, Gąsior-Perczak D, Pałyga I, Walczyk A, Gadawska-Juszczyk K, Płusa A, Mężyk R, Chrapek M, Góźdź S, Kowalska A. (2017) Immunohistochemistry cannot replace DNA analysis for evaluation of BRAF V600E mutations in papillary thyroid carcinoma. Oncotarget 8(43):74897–74909. https://doi.org/10.18632/oncotarget.20451.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Takada N, Mussazhanova Z, Hirokawa M, Nakashima M, Miyauchi A. (2018) Immunohistochemical and molecular analyses focusing on mesenchymal cells in papillary thyroid carcinoma with desmoid-type fibromatosis. Pathobiology 85(5–6):300–303. https://doi.org/10.1159/000492117.

    Article  PubMed  Google Scholar 

  38. Zagzag J, Pollack A, Dultz L, Dhar S, Ogilvie JB, Heller KS, Deng FM, Patel KN. (2013) Clinical utility of immunohistochemistry for the detection of the BRAF v600e mutation in papillary thyroid carcinoma. Surgery 154(6):1199–1204. https://doi.org/10.1016/j.surg.2013.06.020.

    Article  PubMed  Google Scholar 

  39. Zhang X, Wang L, Wang J, Zhao H, Wu J, Liu S, Zhang L, Li Y, Xing X. (2018) Immunohistochemistry is a feasible method to screen BRAF V600E mutation in colorectal and papillary thyroid carcinoma. Exp Mol Pathol 105(1):153–159. https://doi.org/10.1016/j.yexmp.2018.07.006.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu X, Luo Y, Bai Q, Lu Y, Lu Y, Wu L, Zhou X. (2016) Specific immunohistochemical detection of the BRAF V600E mutation in primary and metastatic papillary thyroid carcinoma. Exp Mol Pathol 100(1):236–241.https://doi.org/10.1016/j.yexmp.2016.01.004.

    Article  CAS  PubMed  Google Scholar 

  41. Pyo JS, Sohn JH, Kang G. (2015). BRAF immunohistochemistry using clone VE1 is strongly concordant with BRAF(V600E) mutation test in papillary thyroid carcinoma. Endocr Pathol 26(3):211–217. https://doi.org/10.1007/s12022-015-9374-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Coreen Marino, for assistance in retrieving full-text papers.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Sawka.

Ethics declarations

Conflict of Interest

None declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 Sample Search Strategy

Database: Ovid MEDLINE: Epub ahead of print, in-process, and other non-indexed citations, Ovid MEDLINE® Daily and Ovid MEDLINE® <1946–Present>

  1. 1

    1 exp thyroid neoplasms/

  2. 2

    (thyroid adj cancer$).mp.

  3. 3

    (thyroid adj carcinoma$).mp.

  4. 4

    (thyroid adj neoplasm$).mp.

  5. 5

    (thyroid adj adenoma$).mp.

  6. 6

    (thyroid adj tumo?r$).mp.

  7. 7

    or/1–6

  8. 8

    BRAF$.mp.

  9. 9

    B-raf$.mp.

  10. 10

    “proto-oncogene B-Raf”.mp.

  11. 11

    NS7.mp.

  12. 12

    “p94”.mp.

  13. 13

    “proto-oncogene B-Raf”.mp.

  14. 14

    “murine sarcoma viral (v-raf) oncogene homolog B1”.mp.

  15. 15

    RAFB1.mp.

  16. 16

    “94 kDa B-raf protein”.mp.

  17. 17

    “v-raf murine sarcoma viral oncogene homolog B”.mp.

  18. 18

    “v-raf murine sarcoma viral oncogene homolog B1”.mp.

  19. 19

    or/8–18

  20. 20

    exp. Immunohistochemistry/

  21. 21

    Histocytochemistry/

  22. 22

    Biomarkers, Tumor/

  23. 23

    “Staining and Labeling”/

  24. 24

    immunohistochem$.mp.

  25. 25

    histocytochem$.mp.

  26. 26

    immunocytochem$.mp.

  27. 27

    immunohistocytochem$.mp.

  28. 28

    immunostain$.mp.

  29. 29

    biomarker$.mp.

  30. 30

    histochem$.mp.

  31. 31

    marker$.mp.

  32. 32

    stain$.mp.

  33. 33

    (mark$ adj3 agent$).mp.

  34. 34

    (antibod$ adj3 label$).mp.

  35. 35

    (immun$ adj3 label$).mp.

  36. 36

    immunolabel$.mp.

  37. 37

    or/20–36

  38. 38

    7 and 19 and 37

  39. 39

    exp. animals/not (exp animals/and humans/)

  40. 40

    38 not 39

  41. 41

    limit 40 to yr=“2005–Current”

Appendix 2

Table 5 Details of the full-text papers that were reviewed and excluded (with reasons for exclusion)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singarayer, R., Mete, O., Perrier, L. et al. A Systematic Review and Meta-Analysis of the Diagnostic Performance of BRAF V600E Immunohistochemistry in Thyroid Histopathology. Endocr Pathol 30, 201–218 (2019). https://doi.org/10.1007/s12022-019-09585-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-019-09585-2

Keywords

Navigation