Skip to main content
Log in

Age Prediction Using Resting-State Functional MRI

  • Research
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The increasing lifespan and large individual differences in cognitive capability highlight the importance of comprehending the aging process of the brain. Contrary to visible signs of bodily ageing, like greying of hair and loss of muscle mass, the internal changes that occur within our brains remain less apparent until they impair function. Brain age, distinct from chronological age, reflects our brain’s health status and may deviate from our actual chronological age. Notably, brain age has been associated with mortality and depression. The brain is plastic and can compensate even for severe structural damage by rewiring. Functional characterization offers insights that structural cannot provide. Contrary to the multitude of studies relying on structural magnetic resonance imaging (MRI), we utilize resting-state functional MRI (rsfMRI). We also address the issue of inclusion of subjects with abnormal brain ageing through outlier removal. In this study, we employ the Least Absolute Shrinkage and Selection Operator (LASSO) to identify the 39 most predictive correlations derived from the rsfMRI data. The data is from a cohort of 176 healthy right-handed volunteers, aged 18-78 years (95/81 male/female, mean age 48, SD 17) collected at the Mind Research Imaging Center at the National Cheng Kung University. We establish a normal reference model by excluding 68 outliers, which achieves a leave-one-out mean absolute error of 2.48 years. By asking which additional features that are needed to predict the chronological age of the outliers with a smaller error, we identify correlations predictive of abnormal aging. These are associated with the Default Mode Network (DMN). Our normal reference model has the lowest prediction error among published models evaluated on adult subjects of almost all ages and is thus a candidate for screening for abnormal brain aging that has not yet manifested in cognitive decline. This study advances our ability to predict brain aging and provides insights into potential biomarkers for assessing brain age, suggesting that the role of DMN in brain aging should be studied further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aamodt, E. B., Alnaes, D., de Lange, A.-M.G., Aam, S., Schellhorn, T., Saltvedt, I., ... & Westlye, L. T. (2023). Longitudinal brain age prediction and cognitive function after stroke. Neurobiology of Aging, 122, 55–64.

    Article  PubMed  Google Scholar 

  • Baecker, L., Garcia-Dias, R., Vieira, S., Scarpazza, C., & Mechelli, A. (2021). Machine learning for brain age prediction: Introduction to methods and clinical applications. EBioMedicine, 72.

  • Ballester, P. L., Suh, J. S., Ho, N. C., Liang, L., Hassel, S., Strother, S. C. ... & others. (2023). Gray matter volume drives the brain age gap in schizophrenia: a shap study. Schizophrenia, 9(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., Fox, N. C., ... & others. (2012). Clinical and biomarker changes in dominantly inherited alzheimer’s disease. New England Journal of Medicine, 367(9), 795–804.

    Article  CAS  PubMed  Google Scholar 

  • Beck, A. T., Steer, R. A., & Brown, G. (1996). Beck depression inventory–ii. Psychological assessment.

  • Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36(48), 12083–12094.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J. H. , Poudel, R. P. , Tsagkrasoulis, D., Caan, M. W. , Steves, C. , Spector, T. D., & Montana, G. (2017). Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage, 163(March), 115–124. arXiv:1612.02572, https://doi.org/10.1016/j.neuroimage.2017.07.059

  • Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernandez, V., Munoz Maniega, S., Royle, N., ... & othes. (2018). Brain age predicts mortality. Molecular psychiatry, 23(5), 1385–1392.

    Article  CAS  PubMed  Google Scholar 

  • de Lange, A.-M. G., Anaturk, M., Rokicki, J., Han, L. K., Franke, K., Alnaes, D., ... & others. (2022). Mind the gap: Performance metric evaluation in brain-age prediction. Human Brain Mapping, 43(10), 3113–3129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doucet, G. E., Bassett, D. S., Yao, N., Glahn, D. C., & Frangou, S. (2017). The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. American Journal of Psychiatry, 174(12), 1214–1222.

    Article  PubMed  Google Scholar 

  • Elliott, M. L., Belsky, D. W., Knodt, A. R., Ireland, D., Melzer, T. R., Poulton, R., ... & Hariri, A. R. (2021). Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Molecular psychiatry, 26(8), 3829–3838.

    Article  PubMed  Google Scholar 

  • Franke, K., & Gaser, C. (2019). Ten years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained? Frontiers in Neurology, 789.

  • Gonneaud, J., Baria, A. T., Pichet Binette, A., Gordon, B. A., Chhatwal, J. P., & Cruchaga, C. (2021). Accelerated functional brain aging in pre-clinical familial alzheimer’s disease. Nature Communications, 12(1), 5346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1), 63–72.

    Article  PubMed  Google Scholar 

  • Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fmri preprocessing reintroduces noise and obscures functional connectivity. Neuroimage, 82, 208–225.

    Article  PubMed  Google Scholar 

  • Ibrahim, B., Suppiah, S., Ibrahim, N., Mohamad, M., Hassan, H. A., Nasser, N. S., & Saripan, M. I. (2021). Diagnostic power of resting-state fmri for detection of network connectivity in alzheimer’s disease and mild cognitive impairment: A systematic review. Human Brain Mapping, 42(9), 2941–2968.

    Article  PubMed  PubMed Central  Google Scholar 

  • James, G., Witten, D., Hastie, T., Tibshirani, R., et al. (2013). An introduction to statistical learning (Vol. 112). Springer.

  • Jawinski, P., Markett, S., Drewelies, J., Düzel, S., Demuth, I., Steinhagen-Thiessen, E., ... & others. (2022). Linking brain age gap to mental and physical health in the berlin aging study ii. Frontiers in Aging Neuroscience, 14, 791222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.

    Article  PubMed  Google Scholar 

  • Jiang, H., Lu, N., Chen, K., Yao, L., Li, K., Zhang, J., & Guo, X. (2020). Predicting brain age of healthy adults based on structural mri parcellation using convolutional neural networks. Frontiers in Neurology, 10, 1346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jónsson, B. A., Bjornsdottir, G., Thorgeirsson, T., Ellingsen, L. M., Walters, G. B., Gudbjartsson, D., ... & Ulfarsson, M. (2019). Brain age prediction using deep learning uncovers associated sequence variants. Nature Communications, 10(1), 5409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, S., Eum, S., Chang, Y., Koyanagi, A., Jacob, L., Smith, L., ... & Song, T. -J. (2022). Burden of neurological diseases in asia from 1990 to 2019: a systematic analysis using the global burden of disease study data. BMJ Open, 12(9), e059548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucikova, L., Goerdten, J., Dounavi, M.-E., Mak, E., Su, L., Waldman, A. D., ... & Ritchie, C. W. (2021). Resting-state brain connectivity in healthy young and middle-aged adults at risk of progressive alzheimer’s disease. Neuroscience & Biobehavioral Reviews, 129, 142–153.

    Article  Google Scholar 

  • Lancaster, J. , Lorenz, R. , Leech, R., & Cole, J. H. (2018). Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction. Frontiers in Aging Neuroscience, 10(FEB), 1–10. https://doi.org/10.3389/fnagi.2018.00028

  • Lee, J., Burkett, B. J., Min, H.-K., Senjem, M. L., Lundt, E. S., Botha, H., ... & others. (2022). Deep learning-based brain age prediction in normal aging and dementia. Nature Aging, 2(5), 412–424.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, P. -L. , Kuo, C. -Y. , Wang, P. -N. , Chen, L. -K. , Lin, C. -P. , Chou, K. -H., & Chung, C. -P. (2022). Regional rather than global brain age mediates cognitive function in cerebral small vessel disease. Brain Communications, 4(5), fcac233.

  • Li, H. , Satterthwaite, T. D., & Fan, Y. (2018). Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks. 2018 ieee 15th international symposium on biomedical imaging (isbi 2018) (pp. 101–104).

  • Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M., ... & others. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage, 148, 179–188.

    Article  PubMed  Google Scholar 

  • Liu, T., Wang, L., Suo, D., Zhang, J., Wang, K., Wang, J., ... & Yan, T. (2022). Resting-state functional mri of healthy adults: temporal dynamic brain coactivation patterns. Radiology, 304(3), 624–632.

    Article  PubMed  Google Scholar 

  • Madan, C. R., & Kensinger, E. A. (2018). Predicting age from cortical structure across the lifespan. European Journal of Neuroscience, 47(5), 399–416. https://doi.org/10.1111/ejn.13835

    Article  PubMed  Google Scholar 

  • Millar, P. R., Luckett, P. H., Gordon, B. A., Benzinger, T. L., Schindler, S. E., & Fagan, A. M. (2022). Predicting brain age from functional connectivity in symptomatic and preclinical alzheimer disease. Neuroimage, 256, 119228.

    Article  PubMed  Google Scholar 

  • Mohajer, B., Abbasi, N., Mohammadi, E., Khazaie, H., Osorio, R. S., Rosenzweig, I., ... & others. (2020). Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing. Human Brain Mapping, 41(11), 3034–3044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., ... & Chertkow, H. (2005). The montreal cognitive assessment, moca: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.

    Article  PubMed  Google Scholar 

  • Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., & Abd-Allah, F. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. The Lancet Public Health, 7(2), e105–e125.

    Article  Google Scholar 

  • Niu, X., Zhang, F., Kounios, J., & Liang, H. (2020). Improved prediction of brain age using multimodal neuroimaging data. Human Brain Mapping, 41(6), 1626–1643.

    Article  PubMed  Google Scholar 

  • Oschmann, M., Gawryluk, J. R., & Initiative, A. D. N. (2020). A longitudinal study of changes in resting-state functional magnetic resonance imaging functional connectivity networks during healthy aging. Brain Connectivity, 10(7), 377–384.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardoe, H. R., & Kuzniecky, R. (2018). NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction. Neuroinformatics, 16(1), 43–49. https://doi.org/10.1007/s12021-017-9346-9

    Article  PubMed  Google Scholar 

  • Podgórski, P., Waliszewska-Prosół, M., Zimny, A., Sąsiadek, M., & Bladowska, J. (2021). Resting-state functional connectivity of the ageing female brain-differences between young and elderly female adults on multislice short tr rs-fmri. Frontiers in Neurology, 12, 645974.

    Article  PubMed  PubMed Central  Google Scholar 

  • Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., ... & others. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preische, O., Schultz, S. A., Apel, A., Kuhle, J., Kaeser, S. A., Barro, C., ... & others. (2019). Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic alzheimer’s disease. Nature Medicine, 25(2), 277–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, C., Yang, Y., Ye, C., Lv, H., & Ma, T. (2022). Brain age vector: A measure of brain aging with enhanced neurodegenerative disorder specificity. Human Brain Mapping, 43(16), 5017–5031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanford, N., Ge, R., Antoniades, M., Modabbernia, A., Haas, S. S., Whalley, H. C., ... & Frangou, S. (2022). Sex differences in predictors and regional patterns of brain age gap estimates. Human Brain Mapping, 43(15), 4689–4698.

    Article  PubMed  PubMed Central  Google Scholar 

  • Satterthwaite, T. D., Elliott, M. A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M. E., et al. (2014). Neuroimaging of the philadelphia neurodevelopmental cohort. Neuroimage, 86, 544–553.

    Article  PubMed  Google Scholar 

  • Satterthwaite, T. D., Wolf, D. H., Calkins, M. E., Vandekar, S. N., Erus, G., Ruparel, K., et al. (2016). Structural brain abnormalities in youth with psychosis spectrum symptoms. JAMA psychiatry, 73(5), 515–524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinclair, D. A., & Oberdoerffer, P. (2009). The ageing epigenome: damaged beyond repair? Ageing research reviews, 8(3), 189–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267–288.

    Google Scholar 

  • Varikuti, D. P., Genon, S., Sotiras, A., Schwender, H., Hoffstaedter, F., Patil, K. R., & Eickhoff, S. B. (2018). Evaluation of non-negative matrix factorization of grey matter in age prediction. NeuroImage, 173(January), 394–410.

    Article  PubMed  Google Scholar 

  • Wang, R., Liu, N., Tao, Y.-Y., Gong, X.-Q., Zheng, J., Yang, C., & Zhang, X.-M. (2020). The application of rs-fmri in vascular cognitive impairment. Frontiers in Neurology, 11, 951.

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO, A. (2023). World health statistics 2016: monitoring health for the sdgs sustainable development goals. World Health Organization.

  • Yan, C.-G., Wang, X.-D., Zuo, X.-N., & Zang, Y.-F. (2016). Dpabi: data processing and analysis for (resting-state) brain imaging. Neuroinformatics, 14, 339–351.

    Article  PubMed  Google Scholar 

  • Zhu, J.-D., Tsai, S.-J., Lin, C.-P., Lee, Y.-J., & Yang, A. C. (2023). Predicting aging trajectories of decline in brain volume, cortical thickness and fractional anisotropy in schizophrenia. Schizophrenia, 9(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

Download references

Acknowledgements

We thank the Mind Research and Imaging Center (MRIC), supported by MOST, at NCKU for consultation and instrument availability.

Funding

This work was supported by the Ministry of Science and Technology (MOST) of Taiwan (grant number MOST 104-2410-H-006-021-MY2; MOST 106-2410-H-006-031-MY2; MOST 107-2634-F-006-009; MOST 111-2221-E-006-186), and by the National Science and Technology Council (NSTC) of Taiwan (grant number NSTC 112-2321-B-006-013; NSTC 112-2314-B-006-079).

Author information

Authors and Affiliations

Authors

Contributions

Author contribution using the CRediT taxonomy: Conceptualization: SH and TN; Methodology: JC and TN; Software: JC and ZY; Validation: JC and TN; Formal analysis: JC; Investigation: JC; Resources: SH and TN; Data curation: SH and ZY; Writing - original draft preparation: JC; Writing - review and editing: SH, TN, and ZY; Visualization: JC and TN; Supervision: SH and TN. Project administration: SH and TN; Funding acquisition: SH and TN.

Corresponding author

Correspondence to Torbjörn E. M. Nordling.

Ethics declarations

Ethics Approval

The resting state functional MRI data was collected following procedures with ethical approval obtained from the National Cheng Kung University Research Ethics Committee.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 656 KB)

Supplementary file2 (ZIP 1536 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J.R., Yao, ZF., Hsieh, S. et al. Age Prediction Using Resting-State Functional MRI. Neuroinform 22, 119–134 (2024). https://doi.org/10.1007/s12021-024-09653-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-024-09653-x

Keywords

Navigation