Skip to main content

Advertisement

Log in

Identification and functional characterization of compound heterozygous CYP11B1 gene mutations

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

11β-Hydroxylase deficiency (11β-OHD) is the second leading cause of congenital adrenal hyperplasia (CAH), a rare autosomal recessive disease caused by mutations in the CYP11B1 gene. We previously reported the case of a male Chinese patient with typical 11β-OHD symptoms. Sanger sequencing revealed that the patient carried a splice-site mutation, c.595+1G>A in the CYP11B1 gene. His mother and sister harbored the heterozygous mutation, c.595+1G>A. Paradoxically, Sanger sequencing did not detect any abnormality in the CYP11B1 gene of his father and brother. Therefore, in this study, we aimed to further explore the exact genetic etiology of 11β-OHD in this pedigree and analyze the functional consequence of the c.595+1G>A mutation.

Methods

Gemomic DNA was extracted from the peripheral blood leukocytes of the family members and normal control individuals, followed by quantitative real-time polymerase chain reaction (qPCR) to detect the copy number of the target CYP11B1 gene fragment. Mutation analysis was also performed via whole-exome sequencing (WES) followed by Sanger sequencing validation. In vitro minigene assay was also performed to investigate the impact of the c.595+1G>A mutation on pre-mRNA splicing.

Results

qPCR results suggested a heterozygous deletion encompassing position c.595+1 along with flanking exonic and intronic sequences in the CYP11B1 gene of the patient and his father. WES followed by Sanger sequencing verified that the patient carried compound heterozygous mutations in the CYP11B1 gene, including a novel 2840-bp deletion (c.395+661_c.1121+180del) and c.595+1G>A, while his father carried the heterozygous c.395+661_c.1121+180del mutation. No other novel CYP11B1 mutations were found in the rest of the family members. Furthermore, minigene assay revealed that the c.595+1G>A mutation resulted in a 70-bp deletion of exon 3 in the mRNA, and this altered the reading frame at amino acid 176 and created a premature stop codon at amino acid 197.

Conclusion

We identified a novel 2840-bp-sized large deletion and confirmed that the c.595+1G>A mutation disrupts normal pre-mRNA splicing. Either mutation could significantly alter the reading frame and abolish CYP11B1 enzyme activity. Therefore, our findings widen the mutation spectrum of CYP11B1 and provide an accurate diagnosis of 11β-OHD at a molecular genetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated for this study can be available on request to the authors.

References

  1. K. Bulsari, H. Falhammar, Clinical perspectives in congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. Endocrine 55(1), 19–36 (2017). https://doi.org/10.1007/s12020-016-1189-x

    Article  CAS  PubMed  Google Scholar 

  2. A. Khattab, S. Haider, A. Kumar, S. Dhawan, D. Alam, R. Romero et al. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. Proc. Natl Acad. Sci. USA 114(10), E1933–E1940 (2017). https://doi.org/10.1073/pnas.1621082114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. Schiffer, S. Anderko, F. Hannemann, A. Eiden-Plach, R. Bernhardt, The CYP11B subfamily. J. Steroid Biochem. Mol. Biol. 151, 38–51 (2015). https://doi.org/10.1016/j.jsbmb.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  4. W.L. Miller, Minireview: regulation of steroidogenesis by electron transfer. Endocrinology 146(6), 2544–2550 (2005). https://doi.org/10.1210/en.2005-0096

    Article  CAS  PubMed  Google Scholar 

  5. Y.S. Zhu, J.J. Cordero, S. Can, L.Q. Cai, X. You, C. Herrera et al. Mutations in CYP11B1 gene: phenotype-genotype correlations. Am. J. Med Genet A 122A(3), 193–200 (2003). https://doi.org/10.1002/ajmg.a.20108

    Article  PubMed  Google Scholar 

  6. M.A. Alqahtani, A.A. Shati, M. Zou, A.M. Alsuheel, A.A. Alhayani, S.M. Al-Qahtani et al. A novel mutation in the CYP11B1 gene causes steroid 11beta-hydroxylase deficient congenital adrenal hyperplasia with reversible cardiomyopathy. Int. J. Endocrinol. 2015, 595164 (2015). https://doi.org/10.1155/2015/595164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. I. Fylaktou, P. Smyrnaki, A. Sertedaki, M. Dracopoulou, C. Kanaka-Gantenbein, Congenital adrenal hyperplasia caused by compound heterozygosity of two novel CYP11B1 gene variants. Hormones (Athens) 21(1), 155–161 (2022). https://doi.org/10.1007/s42000-021-00322-1

    Article  CAS  PubMed  Google Scholar 

  8. S. Nimkarn, M.I. New, Steroid 11beta-hydroxylase deficiency congenital adrenal hyperplasia. Trends Endocrinol. Metab. 19(3), 96–99 (2008). https://doi.org/10.1016/j.tem.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  9. C. Gu, H. Tan, J. Yang, Y. Lu, Y. Ma, Congenital adrenal hyperplasia due to 11-hydroxylase deficiency-Compound heterozygous mutations of a prevalent and two novel CYP11B1 mutations. Gene 626, 89–94 (2017). https://doi.org/10.1016/j.gene.2017.05.029

    Article  CAS  PubMed  Google Scholar 

  10. N.V. Belkina, M. Lisurek, A.S. Ivanov, R. Bernhardt, Modelling of three-dimensional structures of cytochromes P450 11B1 and 11B2. J. Inorg. Biochem. 87(4), 197–207 (2001). https://doi.org/10.1016/s0162-0134(01)00331-2

    Article  CAS  PubMed  Google Scholar 

  11. F. Bas, G. Toksoy, B. Ergun-Longmire, Z.O. Uyguner, Z.Y. Abali, S. Poyrazoglu et al. Prevalence, clinical characteristics and long-term outcomes of classical 11 beta-hydroxylase deficiency (11BOHD) in Turkish population and novel mutations in CYP11B1 gene. J. Steroid Biochem. Mol. Biol. 181, 88–97 (2018). https://doi.org/10.1016/j.jsbmb.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  12. K.M. Curnow, L. Slutsker, J. Vitek, T. Cole, P.W. Speiser, M.I. New et al. Mutations in the CYP11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6, 7, and 8. Proc. Natl Acad. Sci. USA 90(10), 4552–4556 (1993). https://doi.org/10.1073/pnas.90.10.4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Kandemir, D.Y. Yilmaz, E.N. Gonc, A. Ozon, A. Alikasifoglu, A. Dursun et al. Novel and prevalent CYP11B1 gene mutations in Turkish patients with 11-beta hydroxylase deficiency. J. Steroid Biochem. Mol. Biol. 165(Pt A), 57–63 (2017). https://doi.org/10.1016/j.jsbmb.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  14. T.P. Nguyen, T.H. Nguyen, D.N. Ngo, C.D. Vu, T.K. Nguyen, V.H. Nong et al. A novel homozygous mutation IVS6+5G>T in CYP11B1 gene in a Vietnamese patient with 11beta-hydroxylase deficiency. Gene 565(2), 291–294 (2015). https://doi.org/10.1016/j.gene.2015.04.052

    Article  CAS  PubMed  Google Scholar 

  15. K. Matsubara, N. Kataoka, S. Ogita, S. Sano, T. Ogata, M. Fukami et al. Uniparental disomy of chromosome 8 leading to homozygosity of a CYP11B1 mutation in a patient with congenital adrenal hyperplasia: implication for a rare etiology of an autosomal recessive disorder. Endocr. J. 61(6), 629–633 (2014). https://doi.org/10.1507/endocrj.ej13-0509

    Article  CAS  PubMed  Google Scholar 

  16. H. Liu, F. Liu, X. Hou, L. Chen, A study of 11β hydroxylase defect induced by a novel CYP11B1 gene mutation in one family. J. Shandong Univ. (Health Sci.) 55(9), 85–89 (2017). https://doi.org/10.6040/j.issn.1671-7554.0.2017.218

    Article  Google Scholar 

  17. Y. Qian, J. Liu, Y. Yang, M. Chen, C. Jin, P. Chen et al. Paternal low-level mosaicism-caused SATB2-associated syndrome. Front. Genet 10, 630 (2019). https://doi.org/10.3389/fgene.2019.00630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4), 402–408 (2001). https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  19. C. Xu, J. Qiao, W. Liu, X. Jiang, F. Yan, J. Wu et al. Identification and functional characterization of a large deletion of the CYP11B1 gene causing an 11beta-hydroxylase deficiency in a Chinese pedigree. Horm. Res. Paediatr. 78(4), 212–217 (2012). https://doi.org/10.1159/000342871

    Article  CAS  PubMed  Google Scholar 

  20. Q. Zhou, D. Wang, C. Wang, B. Zheng, Q. Liu, Z. Zhu et al. Clinical and molecular analysis of four patients with 11beta-hydroxylase deficiency. Front. Pediatr. 8, 410 (2020). https://doi.org/10.3389/fped.2020.00410

    Article  PubMed  PubMed Central  Google Scholar 

  21. X. Wang, M. Nie, L. Lu, A. Tong, S. Chen, Z. Lu, Identification of seven novel CYP11B1 gene mutations in Chinese patients with 11beta-hydroxylase deficiency. Steroids 100, 11–16 (2015). https://doi.org/10.1016/j.steroids.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  22. H.H. Nguyen, A. Eiden-Plach, F. Hannemann, E.M. Malunowicz, M.F. Hartmann, S.A. Wudy et al. Phenotypic, metabolic, and molecular genetic characterization of six patients with congenital adrenal hyperplasia caused by novel mutations in the CYP11B1 gene. J. Steroid Biochem. Mol. Biol. 155(Pt A), 126–134 (2016). https://doi.org/10.1016/j.jsbmb.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  23. S. Portrat, P. Mulatero, K.M. Curnow, J.L. Chaussain, Y. Morel, L. Pascoe, Deletion hybrid genes, due to unequal crossing over between CYP11B1 (11beta-hydroxylase) and CYP11B2(aldosterone synthase) cause steroid 11beta-hydroxylase deficiency and congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86(7), 3197–3201 (2001). https://doi.org/10.1210/jcem.86.7.7671

    Article  CAS  PubMed  Google Scholar 

  24. K. Matsubara, M. Kagami, M. Fukami, Uniparental disomy as a cause of pediatric endocrine disorders. Clin. Pediatr. Endocrinol. 27(3), 113–121 (2018). https://doi.org/10.1297/cpe.27.113

    Article  PubMed  PubMed Central  Google Scholar 

  25. E.A. Price, K. Price, K. Kolkiewicz, S. Hack, M.A. Reddy, J.L. Hungerford et al. Spectrum of RB1 mutations identified in 403 retinoblastoma patients. J. Med. Genet 51(3), 208–214 (2014). https://doi.org/10.1136/jmedgenet-2013-101821

    Article  CAS  PubMed  Google Scholar 

  26. T. Sahakitrungruang, C. Srichomthong, S. Pornkunwilai, J. Amornfa, S. Shuangshoti, S. Kulawonganunchai et al. Germline and somatic DICER1 mutations in a pituitary blastoma causing infantile-onset Cushing’s disease. J. Clin. Endocrinol. Metab. 99(8), E1487–E1492 (2014). https://doi.org/10.1210/jc.2014-1016

    Article  CAS  PubMed  Google Scholar 

  27. S. Baumgartner-Parzer, M. Witsch-Baumgartner, W. Hoeppner, EMQN best practice guidelines for molecular genetic testing and reporting of 21-hydroxylase deficiency. Eur. J. Hum. Genet 28(10), 1341–1367 (2020). https://doi.org/10.1038/s41431-020-0653-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. F.P. Guengerich, M.R. Waterman, M. Egli, Recent structural insights into cytochrome P450 function. Trends Pharm. Sci. 37(8), 625–640 (2016). https://doi.org/10.1016/j.tips.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  29. D. Machalz, S. Pach, M. Bermudez, M. Bureik, G. Wolber, Structural insights into understudied human cytochrome P450 enzymes. Drug Discov. Today 26(10), 2456–2464 (2021). https://doi.org/10.1016/j.drudis.2021.06.006

    Article  CAS  PubMed  Google Scholar 

  30. Y. Long, S. Han, X. Zhang, X. Zhang, T. Chen, Y. Gao et al. The combination of a novel 2 bp deletion mutation and p.D63H in CYP11B1 cause congenital adrenal hyperplasia due to steroid 11beta-hydroxylase deficiency. Endocr. J. 63(3), 301–310 (2016). https://doi.org/10.1507/endocrj.EJ15-0433

    Article  CAS  PubMed  Google Scholar 

  31. M. Zhang, Y. Liu, S. Sun, H. Zhang, W. Wang, G. Ning et al. A prevalent and three novel mutations in CYP11B1 gene identified in Chinese patients with 11-beta hydroxylase deficiency. J. Steroid Biochem. Mol. Biol. 133, 25–29 (2013). https://doi.org/10.1016/j.jsbmb.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  32. K. Dumic, T. Yuen, Z. Grubic, V. Kusec, I. Barisic, M.I. New, Two novel CYP11B1 gene mutations in patients from two croatian families with 11 beta-hydroxylase deficiency. Int J. Endocrinol. 2014, 185974 (2014). https://doi.org/10.1155/2014/185974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Geley, K. Kapelari, K. Johrer, M. Peter, J. Glatzl, H. Vierhapper et al. CYP11B1 mutations causing congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 81(8), 2896–2901 (1996). https://doi.org/10.1210/jcem.81.8.8768848

    Article  CAS  PubMed  Google Scholar 

  34. X. Yuan, L. Lu, S. Chen, J. Jiang, X. Wang, Z. Liu et al. A Chinese patient with 11beta-hydroxylase deficiency due to novel compound heterozygous mutation in CYP11B1 gene: a case report. BMC Endocr. Disord. 18(1), 68 (2018). https://doi.org/10.1186/s12902-018-0295-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H.M. Peng, R.J. Auchus, Molecular recognition in mitochondrial cytochromes P450 that catalyze the terminal steps of corticosteroid biosynthesis. Biochemistry 56(17), 2282–2293 (2017). https://doi.org/10.1021/acs.biochem.7b00034

    Article  CAS  PubMed  Google Scholar 

  36. P. Concolino, R. Rizza, A. Costella, C. Carrozza, C. Zuppi, E. Capoluongo, CYP21A2 intronic variants causing 21-hydroxylase deficiency. Metabolism 71, 46–51 (2017). https://doi.org/10.1016/j.metabol.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  37. M.P. Karlekar, V. Sarathi, A. Lila, K. Rai, S. Arya, V.V. Bhandare et al. Expanding genetic spectrum and discriminatory role of steroid profiling by LC-MS/MS in 11beta-hydroxylase deficiency. Clin. Endocrinol. (Oxf.) 94(4), 533–543 (2021). https://doi.org/10.1111/cen.14376

    Article  CAS  PubMed  Google Scholar 

  38. W. Dai, X. Zhang, H. Liu, Y. Sun, Y. Fan, Y. Yu, Two intronic variants of CYP11B1 and CYP17A1 disrupt mRNA splicing and cause congenital adrenal hyperplasia (CAH). J. Pediatr. Endocrinol. Metab. 33(9), 1225–1229 (2020). https://doi.org/10.1515/jpem-2020-0058

    Article  CAS  PubMed  Google Scholar 

  39. M. Bao, P. Li, Q. Li, H. Chen, Y. Zhong, S. Li et al. Genetic screening for monogenic hypertension in hypertensive individuals in a clinical setting. J. Med. Genet 57(8), 571–580 (2020). https://doi.org/10.1136/jmedgenet-2019-106145

    Article  CAS  PubMed  Google Scholar 

  40. W. Wang, R. Han, Z. Yang, S. Zheng, H. Li, Z. Wan et al. Targeted gene panel sequencing for molecular diagnosis of congenital adrenal hyperplasia. J. Steroid Biochem. Mol. Biol. 211, 105899 (2021). https://doi.org/10.1016/j.jsbmb.2021.105899

    Article  CAS  PubMed  Google Scholar 

  41. J.H. Kim, G. Park, S.Y. Kim, H.Y. Bae, Thyrotoxic periodic paralysis with Graves’ disease leading to the discovery of a hidden nonclassic 11beta hydroxylase deficiency. Intern. Med. 52(1), 85–88 (2013). https://doi.org/10.2169/internalmedicine.52.8032

    Article  PubMed  Google Scholar 

  42. M. Hampf, N.T. Dao, N.T. Hoan, R. Bernhardt, Unequal crossing-over between aldosterone synthase and 11beta-hydroxylase genes causes congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86(9), 4445–4452 (2001). https://doi.org/10.1210/jcem.86.9.7820

    Article  CAS  PubMed  Google Scholar 

  43. L.P. Valadares, A.C.V. Pfeilsticker, S.M. de Brito Sousa, S.C. Cardoso, O.L. de Moraes, L.C. Goncalves de Castro et al. Insights on the phenotypic heterogenity of 11beta-hydroxylase deficiency: clinical and genetic studies in two novel families. Endocrine 62(2), 326–332 (2018). https://doi.org/10.1007/s12020-018-1691-4

    Article  CAS  PubMed  Google Scholar 

  44. F.C. Soardi, J.Y. Penachioni, G.Z. Justo, T.A. Bachega, M. Inacio, B.B. Mendonca et al. Novel mutations in CYP11B1 gene leading to 11 beta-hydroxylase deficiency in Brazilian patients. J. Clin. Endocrinol. Metab. 94(9), 3481–3485 (2009). https://doi.org/10.1210/jc.2008-2521

    Article  CAS  PubMed  Google Scholar 

  45. N. Janzen, F.G. Riepe, M. Peter, S. Sander, U. Steuerwald, E. Korsch et al. Neonatal screening: identification of children with 11beta-hydroxylase deficiency by second-tier testing. Horm. Res. Paediatr. 77(3), 195–199 (2012). https://doi.org/10.1159/000337974

    Article  CAS  PubMed  Google Scholar 

  46. M. Andrew, M. Barr, E. Davies, A.M. Wallace, J.M. Connell, S.F. Ahmed, Congenital adrenal hyperplasia in a Nigerian child with a novel compound heterozygote mutation in CYP11B1. Clin. Endocrinol. (Oxf.) 66(4), 602–603 (2007). https://doi.org/10.1111/j.1365-2265.2007.02766.x

    Article  CAS  PubMed  Google Scholar 

  47. C.A. Skinner, G. Rumsby, J.W. Honour, Single strand conformation polymorphism (SSCP) analysis for the detection of mutations in the CYP11B1 gene. J. Clin. Endocrinol. Metab. 81(6), 2389–2393 (1996). https://doi.org/10.1210/jcem.81.6.8964882

    Article  CAS  PubMed  Google Scholar 

  48. O. Chabre, S. Portrat-Doyen, J. Vivier, Y. Morel, G. Defaye, Two novel mutations in splice donor sites of CYP11B1 in congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. Endocr. Res. 26(4), 797–801 (2000). https://doi.org/10.3109/07435800009048602

    Article  CAS  PubMed  Google Scholar 

  49. A. Bhangoo, R. Wilson, M.I. New, S. Ten, Donor splice mutation in the 11beta-hydroxylase (CypllB1) gene resulting in sex reversal: a case report and review of the literature. J. Pediatr. Endocrinol. Metab. 19(10), 1267–1282 (2006). https://doi.org/10.1515/jpem.2006.19.10.1267

    Article  CAS  PubMed  Google Scholar 

  50. D.P. Merke, T. Tajima, A. Chhabra, K. Barnes, E. Mancilla, J. Baron et al. Novel CYP11B1 mutations in congenital adrenal hyperplasia due to steroid 11 beta-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 83(1), 270–273 (1998). https://doi.org/10.1210/jcem.83.1.4513

    Article  CAS  PubMed  Google Scholar 

  51. L. Chabraoui, F. Abid, R. Menassa, A. Gaouzi, A. El Hessni, Y. Morel, Three novel CYP11B1 mutations in congenital adrenal hyperplasia due to steroid 11Beta-hydroxylase deficiency in a Moroccan population. Horm. Res. Paediatr. 74(3), 182–189 (2010). https://doi.org/10.1159/000281417

    Article  CAS  PubMed  Google Scholar 

  52. C. Guzzetti, C. Bizzarri, E. Pisaneschi, M. Mucciolo, E. Bellacchio, A. Ibba et al. Next-generation sequencing identifies different genetic defects in 2 patients with primary adrenal insufficiency and gonadotropin-independent precocious puberty. Horm. Res. Paediatr. 90(3), 203–211 (2018). https://doi.org/10.1159/000492496

    Article  CAS  PubMed  Google Scholar 

  53. P. Charnwichai, P. Yeetong, K. Suphapeetiporn, V. Supornsilchai, T. Sahakitrungruang, V. Shotelersuk, Splicing analysis of CYP11B1 mutation in a family affected with 11beta-hydroxylase deficiency: case report. BMC Endocr. Disord. 16(1), 37 (2016). https://doi.org/10.1186/s12902-016-0118-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. K. Dumic, R. Wilson, P. Thanasawat, Z. Grubic, V. Kusec, K. Stingl et al. Steroid 11-beta hydroxylase deficiency caused by compound heterozygosity for a novel mutation in intron 7 (IVS 7 DS+4A to G) in one CYP11B1 allele and R448H in exon 8 in the other. Eur. J. Pediatr. 169(7), 891–894 (2010). https://doi.org/10.1007/s00431-009-1110-1

    Article  PubMed  Google Scholar 

  55. T. Breil, V. Yakovenko, I. Inta, D. Choukair, D. Klose, J. Mittnacht et al. Typical characteristics of children with congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency: a single-centre experience and review of the literature. J. Pediatr. Endocrinol. Metab. 32(3), 259–267 (2019). https://doi.org/10.1515/jpem-2018-0298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our sincere thanks to the patient and his family members for their participation.

Funding

This work was supported by grants from the National Key Research and Development Program of China (Grant number 2022YFA1004801 to F.L.) and the Special fund for Taishan industrial leading talent project (Grant number 2020.01-2023.12 to L.C.).

Author information

Authors and Affiliations

Authors

Contributions

L.C. and X.H. designed and supervised the study. L.C. and F.L. acquired funding for the study. H.L., F.L. and Z.W. performed research and wrote the paper. P.L. analyzed the data. H.L. and Q.L. interpreted the results. All authors contributed to the revision of the manuscript.

Corresponding authors

Correspondence to Li Chen or Xinguo Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The study was performed in line with the Declaration of Helsinki and was approved by the Ethics Committee of Shandong First Medical University (Approval No. R202210190129).

Consent to participate

Written informed consent was obtained from all the participants included in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: He Liu, Fuqiang Liu

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, F., Wei, Z. et al. Identification and functional characterization of compound heterozygous CYP11B1 gene mutations. Endocrine 84, 253–264 (2024). https://doi.org/10.1007/s12020-023-03614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03614-1

Keywords

Navigation