Skip to main content
Log in

Artificial Intelligence-based quantitative evaluation of retinal vascular parameters in thyroid-associated ophthalmopathy

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Thyroid-associated ophthalmopathy (TAO) may result in increased metabolism and abnormalities in microcirculation. The fractal dimension (Df) of retinal vessels has been shown to be related to the pathology of a number of ophthalmic disorders, but it hasn’t been investigated in TAO.

Methods

We analyzed 1078 participants aged 18 to 72 (548 healthy volunteers and 530 TAO). Images were captured using a non-mydriatic 45-degree fundus camera. Baseline retinal characteristics, such as vessel width, tortuosity, and Df were measured using semiautomated software from fundus images. The average retinal parameters were compared between the two groups. The receiver operation curve (ROC) was used to assess the diagnostic efficacy of various retinal vascular parameters for TAO.

Results

Despite controlling for potential confounding variables, Df, vessel width, and tortuosity significantly increased in TAO compared to healthy volunteers. Compared to active TAO, patients in the inactive phase had a larger retinal venous caliber (p < 0.05), but there was no difference in Df or arterial caliber. Moderate and severe cases had a higher Df compared with mild cases (EUGOGO guidelines). The area under the ROC for Df, tortuosity, and vascular caliber in the diagnosis of TAO was 0.904 (95% CI: 0.884–0.924), 0.638 (95% CI: 0.598–0.679), and 0.617 (95% CI: 0.576–0.658), respectively.

Conclusions

Due to its accessibility, affordability, and non-invasive nature, retinal vascular Df may serve as a surrogate marker for TAO and might be used to identify severe cases. With relatively high diagnostic performance, the Df is of some utility for the detection of TAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.J. Smith, J.A.M.J.L. Janssen, Insulin-like growth Factor-I receptor and thyroid-associated ophthalmopathy. Endocr. Rev. 40(1), 236–267 (2019). https://doi.org/10.1210/er.2018-00066

    Article  PubMed  Google Scholar 

  2. P.N. Taylor, L. Zhang, R.W.J. Lee et al. New insights into the pathogenesis and nonsurgical management of Graves orbitopathy. Nat. Rev. Endocrinol. 16(2), 104–116 (2020). https://doi.org/10.1038/s41574-019-0305-4

    Article  CAS  PubMed  Google Scholar 

  3. Y. Wu, Q. Yang, L. Ding et al. Peripapillary structural and microvascular alterations in early dysthyroid optic neuropathy. Eye Vis. Lond. Engl. 9(1), 30 (2022). https://doi.org/10.1186/s40662-022-00301-6

    Article  Google Scholar 

  4. T.J. Smith, L. Hegedüs, Graves’ disease. N. Engl. J. Med 375(16), 1552–1565 (2016). https://doi.org/10.1056/NEJMra1510030

    Article  PubMed  Google Scholar 

  5. L. Ye, S.S. Zhou, W.L. Yang et al. Retinal microvasculature alteration in active thyroid-associated ophthalmopathy. Endocr. Pr. 24(7), 658–667 (2018). https://doi.org/10.4158/EP-2017-0229

    Article  Google Scholar 

  6. T. Zhang, W. Xiao, H. Ye, R. Chen, Y. Mao, H. Yang, Peripapillary and macular vessel density in dysthyroid optic neuropathy: an optical coherence tomography angiography study. Invest Ophthalmol. Vis. Sci. 60(6), 1863–1869 (2019). https://doi.org/10.1167/iovs.18-25941

    Article  PubMed  Google Scholar 

  7. J. Ye, W. Liu, X. Hu et al. Elevated pulse pressure correlated with reduced retinal peripapillary capillary in thyroid-associated ophthalmology with visual field defect. Front Endocrinol. 13, 941051 (2022). https://doi.org/10.3389/fendo.2022.941051

    Article  Google Scholar 

  8. M. Jamshidian Tehrani, Z. Mahdizad, A. Kasaei, M.A. Fard, Early macular and peripapillary vasculature dropout in active thyroid eye disease. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von. Graefes Arch. Klin. Exp. Ophthalmol. 257(11), 2533–2540 (2019). https://doi.org/10.1007/s00417-019-04442-8

    Article  Google Scholar 

  9. X. Yang, D. Huang, S. Ai, X. Liang, J. Zhao, L. Fang, Retinal vessel oxygen saturation and vessel diameter in inactive graves ophthalmopathy. Ophthal Plast. Reconstr. Surg. 33(6), 459–465 (2017). https://doi.org/10.1097/IOP.0000000000000826

    Article  PubMed  Google Scholar 

  10. A. Sadeghi-Tari, M. Jamshidian-Tehrani, A. Nabavi et al. Effect of smoking on retrobulbar blood flow in thyroid eye disease. Eye Lond. Engl. 30(12), 1573–1578 (2016). https://doi.org/10.1038/eye.2016.184

    Article  CAS  Google Scholar 

  11. C. Del Noce, M. Roda, N. Valsecchi et al. Evaluation of peripapillary vascular flow in patients with Thyroid-Associated Ophthalmopathy (TAO) by OCT angiography. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von. Graefes Arch. Klin. Exp. Ophthalmol. 260(8), 2711–2716 (2022). https://doi.org/10.1007/s00417-022-05551-7

    Article  CAS  Google Scholar 

  12. Fractal analysis of the vascular tree in the human retina - PubMed. Accessed January 3, 2023. https://pubmed.ncbi.nlm.nih.gov/15255776/

  13. M.A. Mainster, The fractal properties of retinal vessels: embryological and clinical implications. Eye Lond. Engl. 4(Pt 1), 235–241 (1990). https://doi.org/10.1038/eye.1990.33

    Article  Google Scholar 

  14. S.W. Lim, N. Cheung, J.J. Wang et al. Retinal vascular fractal dimension and risk of early diabetic retinopathy: A prospective study of children and adolescents with type 1 diabetes. Diabetes Care 32(11), 2081–2083 (2009). https://doi.org/10.2337/dc09-0719

    Article  PubMed  PubMed Central  Google Scholar 

  15. G. Liew, J.J. Wang, N. Cheung et al. The retinal vasculature as a fractal: methodology, reliability, and relationship to blood pressure. Ophthalmology 115(11), 1951–1956 (2008). https://doi.org/10.1016/j.ophtha.2008.05.029

    Article  PubMed  Google Scholar 

  16. B. Laviña, Brain Vascular Imaging Techniques. Int J. Mol. Sci. 18(1), 70 (2016). https://doi.org/10.3390/ijms18010070

    Article  PubMed  PubMed Central  Google Scholar 

  17. F. Rb, G. Es, S. Aj, et al. Retinal venular tortuosity and fractal dimension predict incident retinopathy in adults with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetologia. 2021;64(5). https://doi.org/10.1007/s00125-021-05388-5

  18. C.Y. Cheung, G.N. Thomas, W. Tay et al. Retinal vascular fractal dimension and its relationship with cardiovascular and ocular risk factors. Am. J. Ophthalmol. 154(4), 663–674.e1 (2012). https://doi.org/10.1016/j.ajo.2012.04.016

    Article  PubMed  Google Scholar 

  19. X. Huang, Y. Zhong, M. Cai, X. Huang, Y. Zhong, M. Cai, Retinal vascular features and diagnostic values in patients with liver cirrhosis. J. NEW Med 52(4), 255 (2021). https://doi.org/10.3969/j.issn.0253-9802.2021.04.006

    Article  Google Scholar 

  20. L. Shao, Q.L. Zhang, T.F. Long et al. Quantitative assessment of fundus tessellated density and associated factors in fundus images using artificial intelligence. Transl. Vis. Sci. Technol. 10(9), 23 (2021). https://doi.org/10.1167/tvst.10.9.23

    Article  PubMed  PubMed Central  Google Scholar 

  21. X. Lyu, P. Jajal, M.Z. Tahir, S. Zhang, Fractal dimension of retinal vasculature as an image quality metric for automated fundus image analysis systems. Sci. Rep. 12(1), 11868 (2022). https://doi.org/10.1038/s41598-022-16089-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Y. Wu, Y. Tu, L. Bao et al. Reduced retinal microvascular density related to activity status and serum antibodies in patients with graves’ ophthalmopathy. Curr. Eye Res. 45(5), 576–584 (2020). https://doi.org/10.1080/02713683.2019.1675177

    Article  PubMed  Google Scholar 

  23. T.V. Dave, S. Laghmisetty, G. Krishnamurthy et al. Retinal vascularity, nerve fiber, and ganglion cell layer thickness in thyroid eye disease on optical coherence tomography angiography. Orbit Amst. Neth. 41(2), 170–177 (2022). https://doi.org/10.1080/01676830.2020.1846761

    Article  Google Scholar 

  24. M. Salvi, D. Dazzi, I. Pellistri, F. Neri, J.R. Wall. Classification and prediction of the progression of thyroid-associated ophthalmopathy by an artificial neural network. Ophthalmology. 2002;109(9). https://doi.org/10.1016/s0161-6420(02)01127-2

  25. M. Jiang, X. Song, H. Zhang et al. The combination of T2-mapping value of lacrimal gland and clinical indicators can improve the stage prediction of Graves’ ophthalmopathy compared to clinical activity scores. Endocrine 78(2), 321–328 (2022). https://doi.org/10.1007/s12020-022-03167-9

    Article  CAS  PubMed  Google Scholar 

  26. Q. Ge, X. Zhang, L. Wang et al. Quantitative evaluation of activity of thyroid-associated Ophthalmopathy using short-tau inversion recovery (STIR) sequence. BMC Endocr. Disord. 21(1), 226 (2021). https://doi.org/10.1186/s12902-021-00895-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. B. Mandelbrot, How long is the coast of britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638 (1967). https://doi.org/10.1126/science.156.3775.636

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Z. Feng, G. Wang, H. Xia et al. Macular vascular geometry changes with sex and age in healthy subjects: a fundus photography study. Front. Med. 2021;8. https://doi.org/10.3389/fmed.2021.778346

  29. J. Grauslund, A. Green, R. Kawasaki, L. Hodgson, A.K. Sjølie, T.Y. Wong, Retinal vascular fractals and microvascular and macrovascular complications in Type 1 diabetes. Ophthalmology 117(7), 1400–1405 (2010). https://doi.org/10.1016/j.ophtha.2009.10.047

    Article  PubMed  Google Scholar 

  30. Fractal analysis of the retinal vasculature and chronic kidney disease - PubMed. Accessed January 4, 2023. https://pubmed.ncbi.nlm.nih.gov/20124213/

  31. Cheung N., Liew G., Lindley R.I. et al. Retinal fractals and acute lacunar stroke. Ann Neurol. 2010;68(1). https://doi.org/10.1002/ana.22011

  32. G. Liew, P. Mitchell, E. Rochtchina et al. Fractal analysis of retinal microvasculature and coronary heart disease mortality. Eur. Heart J. 32(4), 422–429 (2011). https://doi.org/10.1093/eurheartj/ehq431

    Article  PubMed  Google Scholar 

  33. K. Fazil, G. Ozturk Karabulut, Z. Alkin, Evaluation of choroidal thickness and retinal vessel density in patients with inactive Graves’ orbitopathy. Photodiagnosis Photodyn. Ther. 32, 101898 (2020). https://doi.org/10.1016/j.pdpdt.2020.101898

    Article  PubMed  Google Scholar 

  34. Evaluation of retinal and choroidal variations in thyroid-associated ophthalmopathy using optical coherence tomography angiography - PubMed. Accessed January 4, 2023. https://pubmed.ncbi.nlm.nih.gov/33081749/

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82071005); and the Special Fund of the Pediatric Medical Coordinated Development Center of Beijing Hospitals Authority, China (No. XTCX201824).

Author information

Authors and Affiliations

Authors

Contributions

X.J.: Funding acquisition, methodology, supervision, data curation, formal analysis, visualization and original draft writing. L.L., S.L. and D.Z.: Investigation, sample analysis, data curation, resources and review and editing of manuscript. D.L.: Conceptualization, funding acquisition, methodology, supervision, visualization and intellectual editing of manuscript. L.D.: original draft writing, manuscript preparation and final revisions. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Dongmei Li.

Ethics declarations

Ethics

This study is based on the latest version of the Declaration of Helsinki. All participants obtained written informed consent, and the study was approved by the Ethics Committee of Beijing Tongren Hospital

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Dong, L., Luo, L. et al. Artificial Intelligence-based quantitative evaluation of retinal vascular parameters in thyroid-associated ophthalmopathy. Endocrine (2024). https://doi.org/10.1007/s12020-023-03561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-023-03561-x

Keywords

Navigation