Skip to main content

Advertisement

Log in

A systematic review of molecular alterations in invasive non-functioning pituitary adenoma

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Invasive non-functional pituitary adenomas (NFPAs) constitute 35% of NFPAs. Despite a relatively large body of molecular investigations on the invasiveness of NFPA, the underlying molecular mechanisms of invasiveness are yet to be determined. Herein, we aimed to provide an overview of gene/microRNA(miRNAs) expression alterations in invasive NFPA.

Methods

This article describes a systematic literature review of articles published up to March 23, 2021, on the transcriptional alterations of invasive NFPA. Five digital libraries were searched, and 42 articles in total fulfilled the eligibility criteria. Pathway enrichment was conducted, and protein interactions among the identified deregulated genes were inferred.

Results

In total 133 gene/protein transcriptional alterations, comprising 87 increased and 46 decreased expressions, were detected in a collective number of 1001 invasive compared with 1007 non-invasive patients with NFPA. Deregulation of CDH1, PTTG1, CCNB1, SNAI1, SLUG, EZR, and PRKACB, which are associated with epidermal-mesenchymal transition (EMT), was identified. Moreover, six members of the angiogenesis pathway, i.e., VEGFA, FLT1, CCND1, CTNNB1, MYC(c-MYC), and PTTG1, were detected. SLC2A1, FLT1, and VEGFA were also recognized in the hypoxia pathway. Physical interactions of CTNNB1 with FLT1, CCND1, and EZR as well as its indirect interactions with VEGFA, MYC, CCNB1, and PCNA indicate the tight interplay between EMT, angiogenesis, and hypoxia pathways in invasive NFPAs. In addition, Hippo, JAK-STAT, MAPK, Wnt, PI3K-Akt, Ras, TGF-b, VEGF, and ErbB were identified as interwoven signaling pathways.

Conclusion

In conclusion, invasive NFPA shares very common deregulated signaling pathways with invasive cancers. A large amount of heterogeneity in the reported deregulations in different studies necessitates the validation of the expressional changes of the suggested biomarkers in a large number of patients with invasive NFPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All articles used in this systematic review are provided in Supplementary Table 1.

References

  1. M. Gruppetta, C. Mercieca, J. Vassallo, Prevalence and incidence of pituitary adenomas: a population based study in Malta. Pituitary 16(4), 545–553 (2013)

    Article  PubMed  Google Scholar 

  2. G. Ntali, J.A. Wass, Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 21(2), 111–118 (2018)

    Article  PubMed  Google Scholar 

  3. P.U. Freda, J.N. Bruce, A.G. Khandji, Z. Jin, R.A. Hickman, E. Frey et al. Presenting features in 269 patients with clinically nonfunctioning pituitary adenomas enrolled in a prospective study. J. Endocr. Soc. 4(4), bvaa021 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  4. E. Manojlovic-Gacic, B.E. Engström, O. Casar-Borota, Histopathological classification of non-functioning pituitary neuroendocrine tumors. Pituitary 21(2), 119–129 (2018)

    Article  PubMed  Google Scholar 

  5. A.S. Micko, A. Wöhrer, S. Wolfsberger, E. Knosp, Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J. Neurosurg. 122(4), 803–811 (2015)

    Article  PubMed  Google Scholar 

  6. J. Maletkovic, A. Dabbagh, D. Zhang, A. Zahid, M. Bergsneider, M.B. Wang et al. Residual Tumor Confers a 10-Fold Increased Risk of Regrowth in Clinically Nonfunctioning Pituitary Tumors. J. Endocr. Soc. 3(10), 1931–1941 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  7. P.D. Delgado-López, J. Pi-Barrio, M.T. Dueñas-Polo, M. Pascual-Llorente, M.C. Gordón-Bolaños, Recurrent non-functioning pituitary adenomas: a review on the new pathological classification, management guidelines and treatment options. Clin. Transl. Oncol. 20(10), 1233–1245 (2018)

    Article  PubMed  Google Scholar 

  8. M.T. Walsh, W.T. Couldwell, Symptomatic cystic degeneration of a clinically silent corticotroph tumor of the pituitary gland. Skull Base 20(5), 367–370 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  9. J. Trouillas, P. Roy, N. Sturm, E. Dantony, C. Cortet-Rudelli, G. Viennet et al. A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathologica 126(1), 123–135 (2013)

    Article  PubMed  Google Scholar 

  10. S. Asioli, A. Righi, M. Iommi, C. Baldovini, F. Ambrosi, F. Guaraldi et al. Validation of a clinicopathological score for the prediction of post-surgical evolution of pituitary adenoma: retrospective analysis on 566 patients from a tertiary care centre. Eur. J. Endocrinol. 180(2), 127–34. (2019)

    Article  CAS  PubMed  Google Scholar 

  11. O. Mete, S. Ezzat, S.L. Asa, Biomarkers of aggressive pituitary adenomas. J. Mol. Endocrinol. 49(2), R69–R78 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. Q. Yang, X. Li, Molecular Network Basis of Invasive Pituitary Adenoma: A Review. Front Endocrinol. 10, 7 (2019)

    Article  Google Scholar 

  13. Y. Chen, H.-L. Chuan, S.-Y. Yu, C.-Z. Li, Z.-B. Wu, G.-L. Li et al. A novel invasive-related biomarker in three subtypes of nonfunctioning pituitary adenomas. World Neurosurg. 100, 514–21. (2017)

    Article  PubMed  Google Scholar 

  14. W.E. Farrell, D.J. Simpson, J.E. Bicknell, A.J. Talbot, A.S. Bates, R.N. Clayton, Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas: the deleted region involves markers outside of the MTS1 and MTS2 genes. Cancer Res. 57(13), 2703–2709 (1997)

    CAS  PubMed  Google Scholar 

  15. R.V. Lloyd, B.W. Scheithauer, T. Kuroki, S. Vidal, K. Kovacs, L. Stefaneanu, Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr. Pathol. 10(3), 229–35. (1999)

    Article  CAS  PubMed  Google Scholar 

  16. C. McCabe, J. Khaira, K. Boelaert, A. Heaney, L. Tannahill, S. Hussain et al. Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor‐2 (FGF‐2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin. Endocrinol. 58(2), 141–150 (2003)

    Article  CAS  Google Scholar 

  17. X. Zhan, D.M. Desiderio, The use of variations in proteomes to predict, prevent, and personalize treatment for clinically nonfunctional pituitary adenomas. EPMA J. 1(3), 439–459 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  18. L. Hood, Q. Tian, Systems approaches to biology and disease enable translational systems medicine. Genomics, Proteom. Bioinforma. 10(4), 181–185 (2012)

    Article  CAS  Google Scholar 

  19. D.L. Longo, Tumor heterogeneity and personalized medicine. N. Engl. J. Med. 366(10), 956–957 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. J.E. Bradner, D. Hnisz, R.A. Young, Transcriptional addiction in cancer. Cell 168(4), 629–43. (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. O’Brien, H. Hayder, Y. Zayed, C. Peng, Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018)

    Article  Google Scholar 

  22. Y. Peng, C.M. Croce, The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 1(1), 1–9 (2016)

    Article  Google Scholar 

  23. M.V. Kuleshov, M.R. Jones, A.D. Rouillard, N.F. Fernandez, Q. Duan, Z. Wang et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44(W1), W90–W7. (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D. Szklarczyk, A.L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607–D13. (2019)

    Article  CAS  PubMed  Google Scholar 

  25. H. Han, H. Shim, D. Shin, J.E. Shim, Y. Ko, J. Shin et al. TRRUST: a reference database of human transcriptional regulatory interactions. Sci. Rep. 5(1), 1–11 (2015)

    CAS  Google Scholar 

  26. Y. Chen, X. Wang, miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 48(D1), D127–D131 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. M. Sato, R. Tamura, H. Tamura, T. Mase, K. Kosugi, Y. Morimoto et al. Analysis of tumor angiogenesis and immune microenvironment in non-functional pituitary endocrine tumors. J. Clin. Med. 8(5), 695 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  28. S. Uraki, H. Ariyasu, K. Takeshima, S. Morita, H. Inaba, H. Furuta et al. MSH6/2 and PD-L1 expressions are associated with tumor growth and invasiveness in silent pituitary adenoma subtypes. Int. J. Mol. Sci. 21(8), 2831 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  29. W. Jia, J. Zhu, T.A. Martin, A. Jiang, A.J. Sanders, W.G. Jiang, Epithelial-mesenchymal transition (EMT) markers in human pituitary adenomas indicate a clinical course. Anticancer Res. 35(5), 2635–2643 (2015)

    PubMed  Google Scholar 

  30. Y.H. Kim, J.H. Kim, Transcriptome analysis identifies an attenuated local immune response in invasive nonfunctioning pituitary adenomas. Endocrinol. Metab. 34(3), 314–322 (2019)

    Article  CAS  Google Scholar 

  31. P. Matoušek, P. Buzrla, Š. Reguli, J. Krajča, J. Dvořáčková, R. Lipina, Factors that predict the growth of residual nonfunctional pituitary adenomas: correlations between relapse and cell cycle markers. BioMed Res. Int. 2018, 1–9 (2018)

  32. W. Saeger, B. Lüdecke, D. Lüdecke, Clinical tumor growth and comparison with proliferation markers in non-functioning (inactive) pituitary adenomas. Exp. Clin. Endocrinol. Diabetes 116(02), 80–85 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. X. Wang, Y. Fang, Y. Zhou, X. Guo, K. Xu, C. Li, et al. SDF-1α/MicroRNA-134 axis regulates nonfunctioning pituitary neuroendocrine tumor growth via targeting VEGFA. Front. Endocrinol. 952, 1–10 (2020)

  34. G. Trott, B.R. Ongaratti, C.B. de Oliveira Silva, G.D. Abech, T. Haag, C.G.S.L. Rech et al. PTTG overexpression in non-functioning pituitary adenomas: Correlation with invasiveness, female gender and younger age. Ann. Diagnostic Pathol. 41, 83–89 (2019)

    Article  Google Scholar 

  35. L. Zhenye, L. Chuzhong, W. Youtu, L. Xiaolei, C. Lei, H. Lichuan et al. The expression of TGF-β1, Smad3, phospho-Smad3 and Smad7 is correlated with the development and invasion of nonfunctioning pituitary adenomas. J. Transl. Med. 12(1), 1–8 (2014)

    Article  Google Scholar 

  36. M. Ghadir, M.E. Khamseh, M. Panahi-Shamsabad, M. Ghorbani, H. Akbari, A.Z. Mehrjardi et al. Cell proliferation, apoptosis, and angiogenesis in non-functional pituitary adenoma: association with tumor invasiveness. Endocrine 69(3), 596–603 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. X. Liu, S. Ma, Y. Yao, G. Li, M. Feng, K. Deng et al. Differential expression of folate receptor alpha in pituitary adenomas and its relationship to tumor behavior. Neurosurgery 70(5), 1274–1280 (2012)

    Article  PubMed  Google Scholar 

  38. D. Zhemin, L. Bing, W. Qing, Yifeng M., Xiaojie L. Increase in Folate Receptor Alpha Expression in Nonfunctional Pituitary Adenomas. Turkish Neurosurgery. 25(2), 298–304 (2015)

  39. C. Ling, M. Pease, L. Shi, V. Punj, M.S. Shiroishi, D. Commins et al. A pilot genome-scale profiling of DNA methylation in sporadic pituitary macroadenomas: association with tumor invasion and histopathological subtype. PLoS One 9(4), e96178 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  40. S. Cheng, C. Li, W. Xie, Y. Miao, J. Guo, J. Wang et al. Integrated analysis of DNA methylation and mRNA expression profiles to identify key genes involved in the regrowth of clinically non-functioning pituitary adenoma. Aging (Albany NY) 12(3), 2408 (2020)

    Article  CAS  Google Scholar 

  41. S. Cheng, W. Xie, Y. Miao, J. Guo, J. Wang, C. Li et al. Identification of key genes in invasive clinically non-functioning pituitary adenoma by integrating analysis of DNA methylation and mRNA expression profiles. J. Transl. Med. 17(1), 1–12 (2019)

    Article  Google Scholar 

  42. H. Wang, K. Chen, Z. Yang, W. Li, C. Wang, G. Zhang et al. Diagnosis of Invasive Nonfunctional Pituitary Adenomas by Serum Extracellular Vesicles. Anal. Chem. 91(15), 9580–9589 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. R. Mjelle, S.O. Dima, N. Bacalbasa, K. Chawla, A. Sorop, D. Cucu et al. Comprehensive transcriptomic analyses of tissue, serum, and serum exosomes from hepatocellular carcinoma patients. BMC Cancer 19(1), 1–13. (2019)

    Article  CAS  Google Scholar 

  44. L. Zhang, W. Li, L. Cao, J. Xu, Y. Qian, H. Chen et al. PKNOX2 suppresses gastric cancer through the transcriptional activation of IGFBP5 and p53. Oncogene 38(23), 4590–4604 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. J. Wang, N. Ding, Y. Li, H. Cheng, D. Wang, Q. Yang et al. Insulin-like growth factor binding protein 5 (IGFBP5) functions as a tumor suppressor in human melanoma cells. Oncotarget 6(24), 20636 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  46. J.R. Hwang, Y.-J. Cho, Y. Lee, Y. Park, H.D. Han, H.J. Ahn et al. The C-terminus of IGFBP-5 suppresses tumor growth by inhibiting angiogenesis. Sci. Rep. 6(1), 1–12 (2016)

    Article  Google Scholar 

  47. F. Galland, L. Lacroix, P. Saulnier, P. Dessen, G. Meduri, M. Bernier et al. Differential gene expression profiles of invasive and non-invasive non-functioning pituitary adenomas based on microarray analysis. Endocr. Relat. Cancer 17(2), 361–371 (2010)

    Article  CAS  PubMed  Google Scholar 

  48. B. Li, H.B. Zhu, G.D. Song, J.H. Cheng, C.Z. Li, Y.Z. Zhang et al. Regulating the CCNB1 gene can affect cell proliferation and apoptosis in pituitary adenomas and activate epithelial‑to‑mesenchymal transition. Oncol. Lett. 18(5), 4651–4658 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. P. Zhao, P. Zhang, W. Hu, H. Wang, G. Yu, Z. Wang et al. Upregulation of cyclin B1 plays potential roles in the invasiveness of pituitary adenomas. J. Clin. Neurosci. 43, 267–73. (2017)

    Article  CAS  PubMed  Google Scholar 

  50. J. Gil, M. Jordà, B. Soldevila, M. Puig-Domingo, Epithelial–Mesenchymal Transition in the Resistance to Somatostatin Receptor Ligands in Acromegaly. Front. Endocrinol. 12, 226 (2021)

    Article  Google Scholar 

  51. Y. Song, X. Ma, M. Zhang, M. Wang, G. Wang, Y. Ye et al. Ezrin Mediates Invasion and Metastasis in Tumorigenesis: A Review. Front. Cell Dev. Biol. 8, 1321 (2020)

    Article  Google Scholar 

  52. N. Li, J. Kong, Z. Lin, Y. Yang, T. Jin, M. Xu et al. Ezrin promotes breast cancer progression by modulating AKT signals. Br. J. Cancer 120(7), 703–13. (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. C.M. Falch, A.Y. Sundaram, K.A. Øystese, K.R. Normann, T. Lekva, I. Silamikelis et al. Gene expression profiling of fast-and slow-growing non-functioning gonadotroph pituitary adenomas. Eur. J. Endocrinol. 178(3), 295–307 (2018)

    Article  CAS  PubMed  Google Scholar 

  54. M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, M. Tanabe, KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44(D1), D457–D62. (2016)

    Article  CAS  PubMed  Google Scholar 

  55. A.S. Farrell, R.C. Sears, MYC degradation. Cold Spring Harb. Perspect. Med. 4(3), a014365 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  56. C. McCabe, K. Boelaert, L. Tannahill, A. Heaney, A. Stratford, J. Khaira et al. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J. Clin. Endocrinol. Metab. 87(9), 4238–4244 (2002)

    Article  CAS  PubMed  Google Scholar 

  57. Y. Li, L.-P. Zhou, P. Ma, C.-G. Sui, F.-D. Meng, X. Tian et al. Relationship of PTTG expression with tumor invasiveness and microvessel density of pituitary adenomas: a meta-analysis. Genet. Test. Mol. Biomark. 18(4), 279–285 (2014)

    Article  CAS  Google Scholar 

  58. W. Zhou, Y. Song, H. Xu, K. Zhou, W. Zhang, J. Chen et al. In nonfunctional pituitary adenomas, estrogen receptors and slug contribute to development of invasiveness. J. Clin. Endocrinol. Metab. 96(8), E1237–E45. (2011)

    Article  CAS  PubMed  Google Scholar 

  59. A.P. Heaney, G.A. Horwitz, Z. Wang, R. Singson, S. Melmed, Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat. Med. 5(11), 1317–1321 (1999)

    Article  CAS  PubMed  Google Scholar 

  60. Y. Qian, C. Zhang, W. Wang, D. Lu, J. Li, L. Li et al. Hypoxia promotes proliferation of pituitary adenomas by HIF-1α/ALKBH5 signaling in vitro. Int. J. Clin. Exp. Pathol. 13(5), 1030 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. S.-Y. Yu, L.-C. Hong, J. Feng, Y.-T. Wu, Y.-Z. Zhang, Integrative proteomics and transcriptomics identify novel invasive-related biomarkers of non-functioning pituitary adenomas. Tumor Biol. 37(7), 8923–8930 (2016)

    Article  CAS  Google Scholar 

  62. J. Guo, Q. Fang, Y. Liu, W. Xie, Y. Zhang, C. Li, Identifying critical protein‑coding genes and long non‑coding RNAs in non‑functioning pituitary adenoma recurrence. Oncol. Lett. 21(4), 1- (2021)

    Article  Google Scholar 

  63. J. Sinsky, K. Pichlerova, J. Hanes, Tau Protein Interaction Partners and Their Roles in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 22(17), 9207 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Z. Zimu, Z. Jia, F. Xian, M. Rui, R. Yuting, W. Yuan, et al. Decreased Expression of PACSIN1 in Brain Glioma Samples Predicts Poor Prognosis. Front. Mol. Biosci. 772, 1–11 (2021)

  65. Z. Wei, C. Zhou, M. Li, R. Huang, H. Deng, S. Shen et al. Integrated multi-omics profiling of nonfunctioning pituitary adenomas. Pituitary 24(3), 312–25 (2021)

    Article  CAS  PubMed  Google Scholar 

  66. J. Boresowicz, P. Kober, N. Rusetska, M. Maksymowicz, A. Paziewska, M. Dąbrowska, et al. The Search of miRNA Related to Invasive Growth of Nonfunctioning Gonadotropic Pituitary Tumors. Int. J. Endocrinol. 2020, 1–8 (2020)

  67. L. Chen, Y. Liu, Y. Hou, Y. Kato, H. Sano, T. Kanno, Expression and structure of interleukin 4 receptor (IL-4R) complex in human invasive pituitary adenomas. Neurosci. Lett. 417(1), 30–35 (2007)

    Article  CAS  PubMed  Google Scholar 

  68. S.J. Park, H. Kim, S.H. Kim, E.-H. Joe, I. Jou, Epigenetic downregulation of STAT6 increases HIF-1α expression via mTOR/S6K/S6, leading to enhanced hypoxic viability of glioma cells. Acta Neuropathologica Commun. 7(1), 1–19 (2019)

    Article  CAS  Google Scholar 

  69. Y. Wu, J. Bai, L. Hong, C. Liu, S. Yu, G. Yu et al. Low expression of secreted frizzled-related protein 2 and nuclear accumulation of β-catenin in aggressive nonfunctioning pituitary adenoma. Oncol. Lett. 12(1), 199–206 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. S. Yu, X. Wang, K. Cao, X. Bao, J. Yu, Identification of CDK6 and RHOU in serum exosome as biomarkers for the invasiveness of non-functioning pituitary adenoma. Chin. Med. Sci. J. 34(3), 168–176 (2019)

    Article  PubMed  Google Scholar 

  71. V. Cescato, E. Pinto, N. de Castro Musolino, S. Siqueira, M. Teixeira, editors. BCL2, BAX and CASP3 Apoptosis Related Genes Expression in Non-Functioning Pituitary Adenoma and Their Role as Potential Markers of Tumor Behavior. Endocr. Rev. 240–241 (2010)

  72. M. Malumbres, M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9(3), 153–66. (2009)

    Article  CAS  PubMed  Google Scholar 

  73. T. Komori, Regulation of Rb family proteins by Cdk6/Ccnd1 in growth plates. Cell Cycle 12(14), 2161–2162 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. L.J.T. de Araújo, A.M. Lerario, M. de Castro, C.S. Martins, M.D. Bronstein, M.C. Machado et al. Transcriptome analysis showed a differential signature between invasive and non-invasive corticotrophinomas. Front. Endocrinol. 8, 55 (2017)

    Article  Google Scholar 

  75. S. Melmed, Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 7(5), 257–266 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. N. Sun, A. Taguchi, S. Hanash, Switching roles of TGF-β in cancer development: implications for therapeutic target and biomarker studies. J. Clin. Med. 5(12), 109 (2016)

    Article  PubMed Central  Google Scholar 

  77. S. Espiard, M.J. Knape, K. Bathon, G. Assié, M. Rizk-Rabin, S. Faillot, et al. Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI insight. 3(8), 1–11 (2018)

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the Iran University of Medical Sciences.

Author contributions

M.K. designed and supervised the project. Z.E. conducted a literature search. N.H., M.H., S.C., and N.H.M. performed data extraction from the selected articles. N.H. carried out network analysis and wrote the manuscript. M.K. reviewed the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad E. Khamseh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinkhan, N., Honardoost, M., Emami, Z. et al. A systematic review of molecular alterations in invasive non-functioning pituitary adenoma. Endocrine 77, 500–509 (2022). https://doi.org/10.1007/s12020-022-03105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03105-9

Keywords

Navigation