Skip to main content

Advertisement

Log in

Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The dopamine D2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D2 receptor. D2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as “intermediate zone”. This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D2 receptors. D2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Ben-Jonathan, Dopamine: A prolactin-inhibiting hormone. Endocr. Rev. 6(4), 564–589 (1985). doi:10.1210/edrv-6-4-564

    Article  CAS  PubMed  Google Scholar 

  2. R. Pivonello, D. Ferone, G. Lombardi, A. Colao, S.W. Lamberts, L.J. Hofland, Novel insights in dopamine receptor physiology. Eur. J. Endocrinol. 156(Suppl 1), S13–S21 (2007). doi:10.1530/eje.1.02353

    Article  CAS  PubMed  Google Scholar 

  3. M.G. Caron, M. Beaulieu, V. Raymond, B. Gagne, J. Drouin, R.J. Lefkowitz, F. Labrie, Dopaminergic receptors in the anterior pituitary gland. Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J. Biol. Chem. 253(7), 2244–2253 (1978)

    CAS  PubMed  Google Scholar 

  4. M. Munemura, T.E. Cote, K. Tsuruta, R.L. Eskay, J.W. Kebabian, The dopamine receptor in the intermediate lobe of the rat pituitary gland: pharmacological characterization. Endocrinology 107(6), 1676–1683 (1980). doi:10.1210/endo-107-6-1676

    Article  CAS  PubMed  Google Scholar 

  5. S.W. Lamberts, R.M. Macleod, Regulation of prolactin secretion at the level of the lactotroph. Physiol. Rev. 70(2), 279–318 (1990)

    CAS  PubMed  Google Scholar 

  6. J. Stack, A. Surprenant, Dopamine actions on calcium currents, potassium currents and hormone release in rat melanotrophs. J. Physiol. 439, 37–58 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Boschetti, F. Gatto, M. Arvigo, D. Esposito, A. Rebora, M. Talco, M. Albertelli, E. Nazzari, U. Goglia, F. Minuto, D. Ferone, Role of dopamine receptors in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinology 92(Suppl 1), 17–22 (2010). doi:10.1159/000314293

    Article  CAS  PubMed  Google Scholar 

  8. P.C. Goldsmith, M.J. Cronin, R.I. Weiner, Dopamine receptor sites in the anterior pituitary. J. Histochem Cytochem 27(8), 1205–1207 (1979)

    Article  CAS  PubMed  Google Scholar 

  9. U. Renner, T. Arzberger, U. Pagotto, S. Leimgruber, E. Uhl, A. Muller, M. Lange, A. Weindl, G.K. Stalla, Heterogeneous dopamine D2 receptor subtype messenger ribonucleic acid expression in clinically nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab. 83(4), 1368–1375 (1998). doi:10.1210/jcem.83.4.4685

    CAS  PubMed  Google Scholar 

  10. L.V. Neto, O. Machado Ede, R.M. Luque, G.F. Taboada, J.B. Marcondes, L.M. Chimelli, L.P. Quintella, P. Niemeyer Jr., D.P. de Carvalho, R.D. Kineman, M.R. Gadelha, Expression analysis of dopamine receptor subtypes in normal human pituitaries, nonfunctioning pituitary adenomas and somatotropinomas, and the association between dopamine and somatostatin receptors with clinical response to octreotide-LAR in acromegaly. J. Clin. Endocrinol. Metab. 94(6), 1931–1937 (2009). doi:10.1210/jc.2008-1826

    Article  PubMed  PubMed Central  Google Scholar 

  11. L. Stefaneanu, K. Kovacs, E. Horvath, M. Buchfelder, R. Fahlbusch, L. Lancranjan, Dopamine D2 receptor gene expression in human adenohypophysial adenomas. Endocrine 14(3), 329–336 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Wang, J. Li, M. Tohti, Y. Hu, S. Wang, W. Li, Z. Lu, C. Ma, The expression profile of Dopamine D2 receptor, MGMT and VEGF in different histological subtypes of pituitary adenomas: a study of 197 cases and indications for the medical therapy. J. Exp. Clin. Cancer Res. 33, 56 (2014). doi:10.1186/s13046-014-0056-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Saveanu, P. Jaquet, T. Brue, A. Barlier, Relevance of coexpression of somatostatin and dopamine D2 receptors in pituitary adenomas. Mol. Cell. Endocrinol. 286(1-2), 206–213 (2008). doi:10.1016/j.mce.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  14. R. Pivonello, D. Ferone, W.W. de Herder, J.M. Kros, M.L. De Caro, M. Arvigo, L. Annunziato, G. Lombardi, A. Colao, L.J. Hofland, S.W. Lamberts, Dopamine receptor expression and function in corticotroph pituitary tumors. J. Clin. Endocrinol. Metab. 89(5), 2452–2462 (2004). doi:10.1210/jc.2003-030837

    Article  CAS  PubMed  Google Scholar 

  15. L. Vieira Neto, L.E. Wildemberg, A.B. Moraes, L.M. Colli, L. Kasuki, N.V. Marques, E.L. Gasparetto, M. de Castro, C.M. Takiya, M.R. Gadelha, Dopamine receptor subtype 2 expression profile in nonfunctioning pituitary adenomas and in vivo response to cabergoline therapy. Clin. Endocrinol. 82(5), 739–746 (2015). doi:10.1111/cen.12684

    Article  CAS  Google Scholar 

  16. D. Bression, A.M. Brandi, A. Nousbaum, M. Le Dafniet, J. Racadot, F. Peillon, Evidence of dopamine receptors in human growth hormone (GH)-secreting adenomas with concomitant study of dopamine inhibition of GH secretion in a perifusion system. J. Clin. Endocrinol. Metab. 55(3), 589–593 (1982). doi:10.1210/jcem-55-3-589

    Article  CAS  PubMed  Google Scholar 

  17. F. Gatto, F. Barbieri, M. Gatti, R. Wurth, S. Schulz, J.L. Ravetti, G. Zona, M.D. Culler, A. Saveanu, M. Giusti, F. Minuto, L.J. Hofland, D. Ferone, T. Florio, Balance between somatostatin and D2 receptor expression drives TSH-secreting adenoma response to somatostatin analogues and dopastatins. Clin. Endocrinol. 76(3), 407–414 (2012). doi:10.1111/j.1365-2265.2011.04200.x

    Article  CAS  Google Scholar 

  18. R. van der Pas, R.A. Feelders, F. Gatto, C. de Bruin, A.M. Pereira, P.M. van Koetsveld, D.M. Sprij-Mooij, A.M. Waaijers, F. Dogan, S. Schulz, J.M. Kros, S.W. Lamberts, L.J. Hofland, Preoperative normalization of cortisol levels in Cushing’s disease after medical treatment: consequences for somatostatin and dopamine receptor subtype expression and in vitro response to somatostatin analogs and dopamine agonists. J. Clin. Endocrinol. Metab. 98(12), E1880–E1890 (2013). doi:10.1210/jc.2013-1987

    Article  PubMed  Google Scholar 

  19. A.P. Amar, M.H. Weiss, Pituitary anatomy and physiology. Neurosurg. Clin. N. Am. 14(1), 11–23 (2003)

    Article  PubMed  Google Scholar 

  20. S.L. Asa, K. Kovacs, Functional morphology of the human fetal pituitary. Pathol. Annu. 19(Pt 1), 275–315 (1984)

    PubMed  Google Scholar 

  21. I. Doniach, Histopathology of the pituitary. Clin. Endocrinol. Metab. 14(4), 765–789 (1985)

    Article  CAS  PubMed  Google Scholar 

  22. L.C. Saland, The mammalian pituitary intermediate lobe: an update on innervation and regulation. Brain. Res. Bull. 54(6), 587–593 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. R.E. Mains, B.A. Eipper, Synthesis and secretion of corticotropins, melanotropins, and endorphins by rat intermediate pituitary cells. J. Biol. Chem. 254(16), 7885–7894 (1979)

    CAS  PubMed  Google Scholar 

  24. D.I. Lugo, J.E. Pintar, Ontogeny of basal and regulated secretion from POMC cells of the developing anterior lobe of the rat pituitary gland. Dev. Biol. 173(1), 95–109 (1996). doi:10.1006/dbio.1996.0009

    Article  CAS  PubMed  Google Scholar 

  25. H. Shiomi, S.J. Watson, J.E. Kelsey, H. Akil, Pretranslational and posttranslational mechanisms for regulating beta-endorphin-adrenocorticotropin of the anterior pituitary lobe. Endocrinology 119(4), 1793–1799 (1986). doi:10.1210/endo-119-4-1793

    Article  CAS  PubMed  Google Scholar 

  26. P.A. Rosa, P. Policastro, E. Herbert, A cellular basis for the differences in regulation of synthesis and secretion of ACTH/endorphin peptides in anterior and intermediate lobes of the pituitary. J. Exp. Biol. 89, 215–237 (1980)

    CAS  PubMed  Google Scholar 

  27. T. Murakami, A. Ohtsuka, T. Taguchi, A. Kikuta, O. Ohtani, Blood vascular bed of the rat pituitary intermediate lobe, with special reference to its development and portal drainage into the anterior lobe. A scanning electron microscope study of vascular casts. Archivum histologicum Japonicum = Nihon soshikigaku kiroku 48(1), 69–87 (1985)

    CAS  PubMed  Google Scholar 

  28. J.L. Goudreau, S.E. Lindley, K.J. Lookingland, K.E. Moore, Evidence that hypothalamic periventricular dopamine neurons innervate the intermediate lobe of the rat pituitary. Neuroendocrinology 56(1), 100–105 (1992)

    Article  CAS  PubMed  Google Scholar 

  29. J.M. Saavedra, Central and peripheral catecholamine innervation of the rat intermediate and posterior pituitary lobes. Neuroendocrinology 40(4), 281–284 (1985)

    Article  CAS  PubMed  Google Scholar 

  30. M. Holzbauer, K. Racke, The dopaminergic innervation of the intermediate lobe and of the neural lobe of the pituitary gland. Med. Biol. 63(3), 97–116 (1985)

    CAS  PubMed  Google Scholar 

  31. S.L. Lightman, M. Ninkovic, S.P. Hunt, Localization of [3H]spiperone binding sites in the intermediate lobe of the rat pituitary gland. Neurosci. Lett. 32(2), 99–102 (1982)

    Article  CAS  PubMed  Google Scholar 

  32. L. Desrues, M. Lamacz, B.G. Jenks, H. Vaudry, M.C. Tonon, Effect of dopamine on adenylate cyclase activity, polyphosphoinositide metabolism and cytosolic calcium concentrations in frog pituitary melanotrophs. J. Endocrinol. 136(3), 421–429 (1993)

    Article  CAS  PubMed  Google Scholar 

  33. H. Zhang, B.G. Jenks, A. Ciccarelli, E.W. Roubos, W.J. Scheenen, Dopamine D2-receptor activation differentially inhibits N- and R-type Ca2+ channels in Xenopus melanotrope cells. Neuroendocrinology 80(6), 368–378 (2004). doi:10.1159/000084144

    Article  CAS  PubMed  Google Scholar 

  34. D. Radl, C. De Mei, E. Chen, H. Lee, E. Borrelli, Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia. Mol. endocrinol. 27(6), 953–965 (2013). doi:10.1210/me.2013-1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M.J. Cronin, M.O. Thorner, P. Hellmann, A.D. Rogol, Bromocriptine inhibits growth hormone release from rat pituitary cells in primary culture. Proc. Soc. Exp. Biol. Med. 175(2), 191–195 (1984)

    Article  CAS  PubMed  Google Scholar 

  36. S.M. Foord, J.R. Peters, C. Dieguez, M.F. Scanlon, R. Hall, Dopamine receptors on intact anterior pituitary cells in culture: functional association with the inhibition of prolactin and thyrotropin. Endocrinology 112(5), 1567–1577 (1983). doi:10.1210/endo-112-5-1567

    Article  CAS  PubMed  Google Scholar 

  37. D. Bression, A.M. Brandi, M.P. Martres, A. Nousbaum, F. Cesselin, J. Racadot, F. Peillon, Dopaminergic receptors in human prolactin-secreting adenomas: a quantitative study. J. Clin. Endocrinol. Metab. 51(5), 1037–1044 (1980). doi:10.1210/jcem-51-5-1037

    Article  CAS  PubMed  Google Scholar 

  38. A. Colao, A. di Sarno, R. Pivonello, C. di Somma, G. Lombardi, Dopamine receptor agonists for treating prolactinomas. Expert. Opin. Investig. Drugs. 11(6), 787–800 (2002). doi:10.1517/13543784.11.6.787

    Article  CAS  PubMed  Google Scholar 

  39. A. Colao, D. Ferone, P. Marzullo, A. Di Sarno, G. Cerbone, F. Sarnacchiaro, S. Cirillo, B. Merola, G. Lombardi, Effect of different dopaminergic agents in the treatment of acromegaly. J. Clin. Endocrinol. Metab. 82(2), 518–523 (1997). doi:10.1210/jcem.82.2.3648

    Article  CAS  PubMed  Google Scholar 

  40. R. Pivonello, C. Matrone, M. Filippella, L.M. Cavallo, C. Di Somma, P. Cappabianca, A. Colao, L. Annunziato, G. Lombardi, Dopamine receptor expression and function in clinically nonfunctioning pituitary tumors: comparison with the effectiveness of cabergoline treatment. J. Clin. Endocrinol. Metab. 89(4), 1674–1683 (2004). doi:10.1210/jc.2003-030859

    Article  CAS  PubMed  Google Scholar 

  41. R. Pivonello, M.C. De Martino, P. Cappabianca, M. De Leo, A. Faggiano, G. Lombardi, L.J. Hofland, S.W. Lamberts, A. Colao, The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J. Clin. Endocrinol. Metab. 94(1), 223–230 (2009). doi:10.1210/jc.2008-1533

    Article  CAS  PubMed  Google Scholar 

  42. D. Ferone, C. Pivonello, G. Vitale, M.C. Zatelli, A. Colao, R. Pivonello, Molecular basis of pharmacological therapy in Cushing’s disease. Endocrine 46(2), 181–198 (2014). doi:10.1007/s12020-013-0098-5

    Article  CAS  PubMed  Google Scholar 

  43. F. Facchinetti, S. Bernasconi, L. Iughetti, A.D. Genazzani, L. Ghizzoni, A.R. Genazzani, Changes in dopaminergic control of circulating melanocyte-stimulating hormone-related peptides at puberty. Pediatr. Res. 38(1), 91–94 (1995). doi:10.1203/00006450-199507000-00016

    Article  CAS  PubMed  Google Scholar 

  44. A.B. Abou Samra, M. Pugeat, H. Dechaud, L. Nachury, J. Tourniaire, Acute dopaminergic blockade by sulpiride stimulates beta-endorphin secretion in pregnant women. Clin. Endocrinol. 21(5), 583–588 (1984)

    Article  CAS  Google Scholar 

  45. J.R. Lundblad, J.L. Roberts, Regulation of proopiomelanocortin gene expression in pituitary. Endocr. Rev. 9(1), 135–158 (1988). doi:10.1210/edrv-9-1-135

    Article  CAS  PubMed  Google Scholar 

  46. M.M. Murburg, C.W. Wilkinson, M.A. Raskind, R.C. Veith, D.M. Dorsa, Evidence for two differentially regulated populations of peripheral beta-endorphin-releasing cells in humans. J. Clin. Endocrinol. Metab. 77(4), 1033–1040 (1993). doi:10.1210/jcem.77.4.8408451

    CAS  PubMed  Google Scholar 

  47. J.M. Farah Jr., D. Sapun-Malcolm, G.P. Mueller, Apomorphine selectively stimulates opiocortin hormone release from the pars distalis in rats. Eur. J. Pharmacol. 107(3), 385–388 (1985)

    Article  CAS  PubMed  Google Scholar 

  48. J.H. Meador-Woodruff, B. Pellerito, D. Bronstein, H.L. Lin, N. Ling, H. Akil, Differential effects of haloperidol on the rat pituitary: decreased biosynthesis, processing and release of anterior lobe pro-opiomelanocortin. Neuroendocrinology 51(3), 294–303 (1990)

    Article  CAS  PubMed  Google Scholar 

  49. D. Jezova, M. Vigas, Apomorphine injection stimulates beta-endorphin, adrenocorticotropin, and cortisol release in healthy man. Psychoneuroendocrinology 13(6), 479–485 (1988)

    Article  CAS  PubMed  Google Scholar 

  50. M.M. Murburg, D. Paly, C.W. Wilkinson, R.C. Veith, K.L. Malas, D.M. Dorsa, Haloperidol increases plasma beta endorphin-like immunoreactivity and cortisol in normal human males. Life. Sci. 39(4), 373–381 (1986)

    Article  CAS  PubMed  Google Scholar 

  51. S. Kuebber, S. Ropte, A. Hori, Proliferation of adenohypophyseal cells into posterior lobe. Their normal anatomical condition and possible neoplastic potentiality. Acta Neurochir. 104(1-2), 21–26 (1990)

    Article  CAS  PubMed  Google Scholar 

  52. X. Fan, S.J. Olson, M.D. Johnson, Immunohistochemical localization and comparison of carboxypeptidases D, E, and Z, alpha-MSH, ACTH, and MIB-1 between human anterior and corticotroph cell “basophil invasion” of the posterior pituitary. J. Histochem. Cytochem. 49(6), 783–790 (2001)

    Article  CAS  PubMed  Google Scholar 

  53. A. Godbout, M. Manavela, K. Danilowicz, H. Beauregard, O.D. Bruno, A. Lacroix, Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur. J. Endocrinol. 163(5), 709–716 (2010). doi:10.1530/EJE-10-0382

    Article  CAS  PubMed  Google Scholar 

  54. R. Pivonello, M. De Leo, A. Cozzolino, A. Colao, The Treatment of Cushing’s Disease. Endocr. Rev. 36(4), 385–486 (2015). doi:10.1210/er.2013-1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. R. Pivonello, M.C. De Martino, M. De Leo, G. Lombardi, A. Colao, Cushing’s Syndrome. Endocrinol. Metab. Clin. N. Am. 37(1), 135–149 (2008). doi:10.1016/j.ecl.2007.10.010

    Article  CAS  Google Scholar 

  56. L.K. Nieman, B.M. Biller, J.W. Findling, M.H. Murad, J. Newell-Price, M.O. Savage, A. Tabarin, S. Endocrine, Treatment of Cushing’s Syndrome: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 100(8), 2807–2831 (2015). doi:10.1210/jc.2015-1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. R. Pivonello, A.M. Isidori, M.C. De Martino, J. Newell-Price, B.M.K.A.C. Biller: Complications of cushing’s syndrome: State of the art. Lancet Diabetes Endocrinol. (In press 2016)

  58. D. Vassiliadi, S. Tsagarakis, Unusual causes of Cushing’s syndrome. Arq. Bras. Endocrinol. Metabol. 51(8), 1245–1252 (2007)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to Professor Uberto Pagotto, Professor Philippe Chanson and Professor Sylvia Asa for the revision of the manuscript and the crucial suggestions, which improved the quality of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Pivonello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivonello, R., Waaijers, M., Kros, J.M. et al. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland. Endocrine 57, 314–325 (2017). https://doi.org/10.1007/s12020-016-1107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1107-2

Keywords

Navigation