Skip to main content

Advertisement

Log in

Insulin sensitizes FGF21 in glucose and lipid metabolisms via activating common AKT pathway

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Previous studies reveal that fibroblast growth factor 21 (FGF21) sensitizes insulin to achieve a synergy in regulating glucose metabolism. Here, we report that insulin sensitizes FGF21 in regulating both glucose and lipid metabolisms. db/db diabetic mice were subcutaneously administrated once a day for 6 weeks. Effective dose of insulin (1 U) could control blood glucose level of the db/db mice for maximum of 2 h, increased the body weight of the db/db mice and did not improve serum lipid parameters. In contrast, effective dose of FGF21 (0.5 mg/kg) could maintain blood glucose of the db/db mice at normal level for at least 24 h, repressed the weight gain of the mice and significantly improved lipid parameters. Ineffective doses of FGF21 (0.125 mg/kg) and insulin had no effect on blood glucose level of the db/db mice after 24 h administration, body weight or lipid parameters. However, combination of the two ineffective doses could maintain blood glucose level of the db/db mice for at least 24 h, suppressed weight gain and significantly improved lipid parameters. These results suggest that insulin sensitizes FGF21 in regulating both glucose and lipid metabolism. The results aimed to study the molecular basis of FGF21 sensitization indicates that combination of the two ineffective doses increased the mRNA expression of glut1, glut4, β-Klotho, sirt1, pgc-1α, ucp-1 and AKT phosphorylation, decreased fasn. The results demonstrate that insulin sensitizes FGF21 through elevating the phosphorylation of common gene Akt and amplifying FGF21 downstream signaling, including increasing expression of glut1 sirt1, pgc-1α, ucp-1, and decreasing fasn expression. In summary, we reports herein for the first time that insulin sensitizes FGF21 to achieve a synergy in regulating glucose and lipid metabolism. Along with previous studies, we conclude that the synergistic effect between FGF21 and insulin is realized through mutual sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

FGF21:

Fibroblast growth factor 21

AKT:

Protein kinase B

glut1/4 :

Glucose transport1/4

fasn :

Fatty acid synthase

sirt1:

Silent mating type information regulation 2 homolog 1

pgc-1a:

Peroxisome proliferator-activated receptor gamma coactivator-1α

ucp-1:

Uncoupling protein -1

hASC:

Human adipose stem cell derived cells

IR:

Insulin resistant

GHb:

Glycosylated hemoglobin or glycated hemoglobin

TG:

Triacylglycerol

TC:

Total Cholesterol

LDL:

Low-Density Lipoprotein

HDL:

High density lipoprotein

OGTT:

Oral glucose tolerance test

BCA:

Bicinchonini\c acid

DTT:

Dithiothreitol

g6pase :

Glucose-6-phosphatase

pepck :

Phosphoenolpyruvate carboxykinase

FGFR:

Fibroblast growth factor receptor

References

  1. A.R. Saltiel, C.R. Kahn, Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414(6865), 799–806 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. A. Kharitonenkov, T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath, G.E. Sandusky et al., FGF21 as a novel metabolic regulator. J. Clin. Invest. 115(6), 1627–1635 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Kharitonenkov, J.D. Dunbar, H.A. Bina, S. Bright, J.S. Moyers, C. Zhang, L. Ding et al., FGF21/FGF21 receptor interaction and activation is determined by betaKlotho. J. Cell. Physiol. 215(1), 1–7 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. A. Kharitonenkov, A.B. Shanafelt, Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs 22(1), 37–44 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Izumiya, H.A. Bina, N. Ouchi, Y. Akasaki, A. Kharitonenkov, K. Walsh, FGF21 is an Akt-regulated myokine. FEBS Lett. 582(27), 3805–3810 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A.C. Adams, T. Coskun, A.R. Rovira, M.A. Schneider, D.W. Raches, R. Micanovic et al., Fundamentals of FGF19 & FGF21 action in vitro and in vivo. PLoS ONE 7(5), E38438 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. Coskun, H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen et al., Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149(12), 6018–6027 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. M.M. Véniant, C. Hale, J. Helmering, M.M. Chen, S. Stanislaus, J. Busby et al., FGF21 Promotes Metabolic Homeostasis via White Adipose and Leptin in Mice. PLoS One 7(7), E40164 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  9. J. Xu, D.J. Lloyd, C. Hale, S. Stanislaus, M. Chen, G. Sivits, S. Vonderfecht et al., Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58(1), 250–259 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. Angelin, T.E. Larsson, M. Rudling, Circulating fibroblast growth factors as metabolic regulators-a critical appraisal. Cell Metab. 16(6), 693–705 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. A. Kharitonenkov, J.M. Beals, R. Micanovic, B.A. Strifler, R. Rathnachalam, V.J. Wroblewski, S. Li et al., Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One 8(3), E58575 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y.C. Woo, A. Xu, Y. Wang, K.S. Lam, Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin. Endocrinol. (Oxf) 78(4), 489–496 (2013)

    Article  CAS  Google Scholar 

  13. J. Huang, T. Ishino, G. Chen, P. Rolzin, T.F. Osothprarop, K. Retting, L. Li et al., Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J. Pharmacol. Exp. Ther. 346(2), 270–280 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. D.V. Lee, D. Li, Q. Yan, Y. Zhu, B. Goodwin, R. Calle, M.B. Brenner et al., Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC) adipocytes. PLoS One 9(11), E111767 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  15. G.R. Gandhi, A. Stalin, K. Balakrishna, S. Ignacimuthu, M.G. Paulraj, R. Vishal, Insulin sensitization via partial agonism of PPARγ and glucose uptake through translocation and activation of GLUT4 in PI3 K/p-Akt signaling pathway by embelin in type 2 diabetic rats. Biochim. Biophys. Acta 1830(1), 2243–2255 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. S.E. Kahn, M.E. Cooper, Prato. S. Del, Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383(9922), 1068–1083 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S.E. Inzucchi, R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck, A.L. Peters et al., Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 58(3), 429–442 (2015)

    Article  PubMed  Google Scholar 

  18. A.J. Garber, M.J. Abrahamson, J.I. Barzilay, L. Blonde, Z.T. Bloomgarden, M.A. Bush et al., American Association of Clinical Endocrinologists, AACE comprehensive diabetes management algorithm. Endocr Pract. 19(2), 327–336 (2013)

    Article  PubMed  Google Scholar 

  19. Canadian Diabetes Association Clinical Practice Guidelines Expert Committee, A.Y. Cheng, Canadian Diabetes Association, clinical practice guidelines for the prevention and management of diabetes in Canada: methods. Can. J. Diabetes 37, S1–S3 (2013)

    Google Scholar 

  20. R. Chawla, P. Thakur, A. Chowdhry, S. Jaiswal, A. Sharma, R. Goel, J. Sharma et al., Evidence based herbal drug standardization approach in coping with challenges of holistic management of diabetes: a dreadful lifestyle disorder of 21st century. J. Diabetes Metab. Disord. 12(1), 35 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  21. B. Emanuelli, S.G. Vienberg, G. Smyth, C. Cheng, K.I. Stanford, M. Arumugam et al., Interplay between FGF21 and insulin action in the liver regulates metabolism. J. Clin. Invest. 125(1), 458 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  22. J.P. Camporez, F.R. Jornayvaz, M.C. Petersen, D. Pesta, B.A. Guigni, J. Serr, D. Zhang et al., Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154(9), 3099–3109 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P. Raskin, R.A. Guthrie, L. Leiter, A. Riis, L. Jovanovic, Use of insulin aspart, a Fast-acting inulin analog, as the mealtime insulin in the management of patients with Type1 diabetes. Diabetes Care 23(5), 583–588 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. X. Ge, C. Chen, X. Hui, Y. Wang, K.S. Lam, A. Xu, Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J. Biol. Chem. 286(40), 34533–34541 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. P. Iglesias, R. Selgas, S. Romero, J.J. Díez, Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. Eur. J. Endocrinol. 167(3), 301–309 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. J. Xu, S. Stanislaus, N. Chinookoswong, Y.Y. Lau, T. Hager, J. Patel, H. Ge et al., Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models–association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297(5), E1105–E1114 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. M.M. Véniant, C. Hale, J. Helmering, M.M. Chen, S. Stanislaus, J. Busby, S. Vonderfecht et al., FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS One 7(7), E40164 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  28. M.M. Véniant, R. Komorowski, P. Chen, S. Stanislaus, K. Winters, T. Hager, L. Zhou et al., Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology 153(9), 4192–4203 (2012)

    Article  PubMed  Google Scholar 

  29. J.J. Liu, J.P. Foo, S. Liu, S.C. Lim, The role of fibroblast growth factor 21 in diabetes and its complications: a review from clinical perspective. Diabetes Res. Clin. Pract. 108(3), 382–389 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zhang, T. Lei, J.F. Huang, S.B. Wang, L.L. Zhou, Z.Q. Yang, X.D. Chen, The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes. Mol. Cell. Endocrinol. 342(1–2), 41–47 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. M.D. Chau, J. Gao, Q. Yang, Z. Wu, J. Gromada, Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc. Natl. Acad. Sci. USA 107(28), 12553–12558 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H. Jiao, P. Arner, S.L. Dickson, H. Vidal, N. Mejhert, C. Henegar et al., Genetic association and gene expression analysis identify FGFR1 as a new susceptibility gene for human obesity. J. Clin. Endocrinol. Metab. 96(6), E962–E966 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. J. Yie, R. Hecht, J. Patel, J. Stevens, W. Wang, N. Hawkins et al., FGF21 N- and C-termini play different roles in receptor interaction and activation. FEBS Lett. 583(1), 19–24 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. W. Wente, A.M. Efanov, M. Brenner, A. Kharitonenkov, A. Köster, G.E. Sandusky et al., Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55(9), 2470–2478 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. K. Tomiyama, R. Maeda, I. Urakawa, Y. Yamazaki, T. Tanaka, S. Ito et al., Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc. Natl. Acad. Sci. USA 107(4), 1666–1671 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Ito, S. Kinoshita, N. Shiraishi, S. Nakagawa, S. Sekine, T. Fujimori, Y.I. Nabeshima, Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech. Dev. 98(1–2), 115–119 (2000)

    Article  CAS  PubMed  Google Scholar 

  37. F.M. Fisher, J.L. Estall, A.C. Adams, P.J. Antonellis, H.A. Bina, J.S. Flier et al., Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152(8), 2996–3004 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. F.M. Fisher, P.C. Chui, P.J. Antonellis, H.A. Bina, A. Kharitonenkov, J.S. Flier, E. Maratos-Flier, Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59(11), 2781–2789 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. C. Yang, C. Jin, X. Li, F. Wang, W.L. McKeehan, Y. Luo, Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One 7(3), E33870 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Y. Ogawa, H. Kurosu, M. Yamamoto, A. Nandi, K.P. Rosenblatt, R. Goetz et al., BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl. Acad. Sci. USA 104(18), 7432–7437 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Suzuki, Y. Uehara, K. Motomura-Matsuzaka, J. Oki, Y. Koyama, M. Kimura et al., betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol. Endocrinol. 22(4), 1006–1014 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. M. Yang, L. Zhang, C. Wang, H. Liu, G. Boden, G. Yang, L. Li, Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance. PLoS One 7(11), E48392 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. P. Xu, Y. Zhang, W. Wang, Q. Yuan, Z. Liu, L.M. Rasoul et al., Long-Term Administration of Fibroblast Growth Factor 21 Prevents Chemically-Induced Hepatocarcinogenesis in Mice. Dig. Dis. Sci. 60(10), 3032–3043 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. Y. Gao, M. Zhang, T. Wu, M. Xu, H. Cai, Z. Zhang, Effects of D-Pinitol on Insulin Resistance through the PI3 K/Akt Signaling Pathway in Type 2 Diabetes Mellitus Rats. J. Agric. Food Chem. 63(26), 6019–6026 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. A. He, X. Liu, L. Liu, Y. Chang, F. Fang, How many signals impinge on GLUT4 activation by insulin? Cell. Signal. 19(1), 1–7 (2007)

    Article  PubMed  Google Scholar 

  46. J.S. Moyers, T.L. Shiyanova, F. Mehrbod, J.D. Dunbar, T.W. Noblitt, K.A. Otto et al., Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J. Cell. Physiol. 210(1), 1–6 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. G. Gaich, J.Y. Chien, H. Fu, L.C. Glass, M.A. Deeg, W.L. Holland et al., The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18(3), 333–340 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. V. Patel, R. Adya, J. Chen, M. Ramanjaneya, M.F. Bari, S.K. Bhudia et al., Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts. PLoS One 9(2), E87102 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Yu Dan, Deshan Li, and Guiping Ren conceived and designed the experiments. Xianlong Ye, Qiang Wu, Shujie Li, et al. performed the experiments. Yu Dan, Deshan Li, and Guiping Ren analyzed the data. Yu Dan wrote the paper. Deshan Li and Guiping Ren revised the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deshan Li or Guiping Ren.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Both Deshan Li and Guiping Ren contributed equally to the design and supervision of the research for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Ye, X., Wu, Q. et al. Insulin sensitizes FGF21 in glucose and lipid metabolisms via activating common AKT pathway. Endocrine 52, 527–540 (2016). https://doi.org/10.1007/s12020-015-0801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0801-9

Keywords

Navigation