Skip to main content
Log in

Testosterone and heart failure

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Testosterone deficiency is a generalized phenomenon seen in the course of chronic heart failure (CHF). Reduction in circulating testosterone level is a predictor of deterioration of functional capacity over time, underscoring the role of testosterone deficiency in CHF. Anabolic hormones are determinants of exercise capacity and circulating levels of anabolic hormones strongly determine muscle mass and strength. Testosterone deficiency is involved in the pathophysiology of CHF, contributing to some features of this syndrome, such as the reduced muscle mass, abnormal energy handling, fatigue, dyspnea and, finally, cachexia. This review summarizes current knowledge on the role of testosterone deficiency in the pathophysiology of CHF, gaining insights from the potential implications of testosterone as supplementation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.D. Anker, T.P. Chua, P. Ponikowski et al., Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96, 526–534 (1997)

    Article  PubMed  CAS  Google Scholar 

  2. Y. Moriyama, H. Yasue, M. Yoshimura et al., The plasma levels of dehydroepiandrosterone sulfate are decreased in patients with chronic heart failure in proportion to the severity. J. Clin. Endocrinol. Metab. 85, 1834–1840 (2000)

    Article  PubMed  CAS  Google Scholar 

  3. P.E. Kontoleon, M.I. Anastasiou-Nana, P.D. Papapetrou et al., Hormonal profile in patients with congestive heart failure. Int. J. Cardiol. 87, 179–183 (2003)

    Article  PubMed  Google Scholar 

  4. P.J. Pugh, R.D. Jones, J.N. West, T.H. Jones, K.S. Channer, Testosterone treatment for men with chronic heart failure. Heart 90, 446–447 (2004)

    Article  PubMed  CAS  Google Scholar 

  5. C.J. Malkin, T.H. Jones, K.S. Channer, Testosterone in chronic heart failure. Front. Horm. Res. 37, 183–196 (2009)

    Article  PubMed  CAS  Google Scholar 

  6. S.D. Anker, A.L. Clark, M. Kemp, C. Salsbury, M.M. Teixeira, P.G. Hellewell, A.J. Coats, Tumor necrosis factor and steroid metabolism in chronic heart failure: possible relation to muscle wasting. J. Am. Coll. Cardiol. 30, 997–1001 (1997)

    Article  PubMed  CAS  Google Scholar 

  7. E.A. Jankowska, B. Biel, J. Majda et al., Anabolic deficiency in men with chronic heart failure prevalence and detrimental impact on survival. Circulation 114, 1829–1837 (2006)

    Article  PubMed  CAS  Google Scholar 

  8. E.A. Jankowska, G. Gerasimos Filippatos, B. Ponikowska et al., Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. J. Cardiac Fail. 15, 442–450 (2009)

    Article  CAS  Google Scholar 

  9. N. Pitteloud, V.K. Mootha, A.A. Dwyer et al., Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 28, 1636–1642 (2005)

    Article  PubMed  CAS  Google Scholar 

  10. M. Izquierdo, K. Hakkinen, A. Anton et al., Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Med. Sci. Sports Exerc. 33, 1577–1587 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. Z.R. Haydar, M.R. Blackman, J.D. Tobin, J.G. Wright, J.L. Fleg, The relationship between aerobic exercise capacity and circulating IGF1 levels in healthy men and women. J. Am. Geriatr. Soc. 48, 139–145 (2000)

    PubMed  CAS  Google Scholar 

  12. F. Hartgens, H. Kuipers, J.A. Wijnen, H.A. Keizer, Body composition, cardiovascular risk factors and liver function in long-term androgenic–anabolic steroids using body builders three months after drug withdrawal. Int. J. Sports Med. 17, 429–433 (1996)

    Article  PubMed  CAS  Google Scholar 

  13. I. Sinha-Hikim, J. Artaza, L. Woodhouse et al., Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am. J. Physiol. 283, 154–164 (2002)

    Google Scholar 

  14. T.W. Storer, L. Magliano, L. Woodhouse et al., Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J. Clin. Endocrinol. Metab. 88, 1478–1485 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. R. Wolfe, A. Ferrando, M. Sheffield-Moore, R. Urban, Testosterone and muscle protein metabolism. Mayo Clin. Proc. 75(Suppl), S55–S60 (2000)

    PubMed  CAS  Google Scholar 

  16. A.A. Ferrando, M. Sheffield-Moore, C.W. Yeckel et al., Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am. J. Physiol. Endocrinol. Metab. 282, E601–E607 (2002)

    PubMed  CAS  Google Scholar 

  17. F. Kadi, Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br. J. Pharmacol. 154, 522–528 (2008)

    Article  PubMed  CAS  Google Scholar 

  18. R. Hambrecht, E. Fiehn, J. Yu et al., Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J. Am. Coll. Cardiol. 29, 1067–1073 (1997)

    Article  PubMed  CAS  Google Scholar 

  19. A.J. Coats, A.L. Clark, M. Piepoli, M. Volterrani, P.A. Poole-Wilson, Symptoms and quality of life in heart failure: the muscle hypothesis. Br. Heart J. 72, S36–S39 (1994)

    Article  PubMed  CAS  Google Scholar 

  20. M.F. Piepoli, A. Kaczmarek, D.P. Francis et al., Reduced peripheral skeletal muscle mass and abnormal reflex physiology in chronic heart failure. Circulation 114, 126–134 (2006)

    Article  PubMed  Google Scholar 

  21. M. Piepoli, A.L. Clark, M. Volterrani, S. Adamopoulos, P. Sleight, A.J. Coats, Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation 93, 940–952 (1996)

    Article  PubMed  CAS  Google Scholar 

  22. F. Iellamo, J.A. Sala-Mercado, M. Ichinose et al., Spontaneous baroreflex control of heart rate during exercise and muscle metaboreflex activation in heart failure. Am. J. Physiol. Heart Circ. Physiol. 293, H1929–H1936 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. S.D. Anker, P. Ponikowski, S. Varney et al., Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349, 1050–1053 (1997)

    Article  PubMed  CAS  Google Scholar 

  24. P.P. Ponikowski, T.P. Chua, D.P. Francis et al., Muscle ergoreceptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation 104, 2324–2330 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. M.F. Piepoli, A.C. Scott, A. Capucci, A.J. Coats, Skeletal muscle training in chronic heart failure. Acta Physiol. Scand. 171, 295–303 (2001)

    Article  PubMed  CAS  Google Scholar 

  26. G. Caminiti, M. Volterrani, F. Iellamo et al., Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J. Am. Coll. Cardiol. 54, 919–927 (2009)

    Article  PubMed  CAS  Google Scholar 

  27. M. Czesla, G. Mehlhorn, D. Fritzsche, G. Asmussen, Cardiomyoplasty-improvement of muscle fibre type transformation by anabolic steroid. J. Mol. Cell Cardiol. 29, 2989–2996 (1997)

    Article  PubMed  CAS  Google Scholar 

  28. I. Ustünel, G. Akkoyunlu, R. Demir, The effect of testosterone on gastrocnemius muscle fibres in growing and adult male and female rats: a histochemical, morphometric and ultrastructural study. Anat. Histol. Embryol. 32, 70–79 (2003)

    Article  PubMed  Google Scholar 

  29. C.J. Malkin, P.J. Pugh, J.N. West, E.J.R. Van Beek, T.H. Jones, K.S. Channer, Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur. Heart J. 27, 57–64 (2006)

    Article  PubMed  CAS  Google Scholar 

  30. A.M. Traish, F. Saad, R.J. Feeley, A. Guay, The dark side of testosterone review deficiency: III: cardiovascular disease. J. Androl. 30, 477–494 (2009)

    Article  PubMed  CAS  Google Scholar 

  31. T. Montalcini, G. Gorgone, C. Gazzaruso, G. Sesti, F. Perticone, A. Pujia, Endogenous testosterone and endothelial function in postmenopausal women. Coron. Artery Dis. 18, 9–13 (2007)

    Article  PubMed  Google Scholar 

  32. K. Saltiki, G. Papageorgiou, P. Voidonikola et al., Endogenous estrogen levels are associated with endothelial function in males independently of lipid levels. Endocrine 37, 329–335 (2010)

    Article  PubMed  CAS  Google Scholar 

  33. P.J. Pugh, T.H. Jones, K.S. Channer, Acute haemodynamic effects of testosterone in men with chronic heart failure. Eur. Heart J. 24, 909–915 (2003)

    Article  PubMed  CAS  Google Scholar 

  34. K. Swedberg, J. Cleland, H. Dargie et al., Guidelines on the diagnosis and treatment of chronic heart failure: executive summary (update 2005). The task force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology. Eur. Heart J. 26, 1115–1140 (2005)

    Article  PubMed  Google Scholar 

  35. J.L. Fleg, I.L. Pina, G.J. Balady et al., Assessment of functional capacity in clinical and research applications. An advisory from the Committee on Exercise, Rehabilitation and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation 102, 1591–1597 (2000)

    Article  PubMed  CAS  Google Scholar 

  36. D. Francis, W. Shamin, L.C. Davies et al., Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO2 slope and peak VO2. Eur. Heart J. 21, 154–161 (2000)

    Article  PubMed  CAS  Google Scholar 

  37. R. Arena, J. Myers, J. Abella, Development of a ventilatory classification system in patients with heart failure. Circulation 115, 2410–2417 (2007)

    Article  PubMed  Google Scholar 

  38. R. Martin-Du Pan, Androgen deficiency in women: indications and risks of treatment with testosterone or DHEA. Rev. Med. Suisse 3, 792–796 (2007)

    PubMed  Google Scholar 

  39. T. Montalcini, V. Migliaccio, Y. Ferro, C. Gazzaruso, A. Pujia, Androgens for postmenopausal women’s health? Endocrine (2012). doi:10.1007/s12020-012-9692-1

  40. K. Miller, B. Biller, C. Beauregard et al., Effects of testosterone replacement in androgen-deficient women with hypopituitarism: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 91, 1683–1690 (2006)

    Article  PubMed  CAS  Google Scholar 

  41. K.K. Miller, B.M.K. Biller, A. Schaub et al., Effects of testosterone therapy on cardiovascular risk markers in androgen-deficient women with hypopituitarism. J. Clin. Endocrinol. Metab. 92, 2474–2479 (2007)

    Article  PubMed  CAS  Google Scholar 

  42. F. Iellamo, M. Volterrani, G. Caminiti et al., Testosterone therapy in women with chronic heart failure: a pilot double-blind randomized placebo controlled study. J. Am. Coll. Cardiol. 56, 1310–1316 (2010)

    Article  PubMed  CAS  Google Scholar 

  43. J. Shifren, G. Braunstein, J. Simon et al., Transdermal testosterone treatment in women with impaired sexual function after oophorectomy. N. Engl. J. Med. 343, 682–688 (2000)

    Article  PubMed  CAS  Google Scholar 

  44. G. Wittert, I. Chapman, M. Haren, S. Mackintosh, P. Coates, J. Morley, Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J Gerontol Biol Sci Med Sci 58, 618–625 (2003)

    Article  Google Scholar 

  45. C.J. Malkin, T.H. Jones, K.S. Channer, The effect of testosterone on insulin sensitivity in men with heart failure. Eur. J. Heart Fail. 9, 44–50 (2007)

    Article  PubMed  CAS  Google Scholar 

  46. S. von Haehling, W. Doehner, S.D. Anker, Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc. Res. 73, 298–309 (2007)

    Article  Google Scholar 

  47. J.W. Swan, S.D. Anker, C. Walton et al., Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J. Am. Coll. Cardiol. 30, 527–532 (1997)

    Article  PubMed  CAS  Google Scholar 

  48. E. Ingelsson, J. Sundstrom, J. Amlov, B. Zethelius, L. Lind, Insulin resistance and risk of congestive heart failure. JAMA 294, 334–341 (2005)

    Article  PubMed  CAS  Google Scholar 

  49. N. Suskin, R.S. McKelvie, R.J. Burns et al., Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure. Eur. Heart J. 21, 1368–1375 (2000)

    Article  PubMed  CAS  Google Scholar 

  50. W. Doehner, D. Gathercole, M. Cicoira et al., Reduced glucose transporter GLUT4 in skeletal muscle predicts insulin resistance in non-diabetic chronic heart failure patients independently of body composition. Int. J. Cardiol. 138, 19–24 (2010)

    Article  PubMed  Google Scholar 

  51. A. Holmäng, P. Björntorp, The effects of testosterone on insulin sensitivity in male rats. Acta Physiol. Scand. 146, 505–510 (1992)

    Article  PubMed  Google Scholar 

  52. D. Kapoor, E. Goodwin, K.S. Channer, T.H. Jones, Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocr. 154, 899–906 (2006)

    Article  CAS  Google Scholar 

  53. A. Mortara, M.T. La Rovere, G.D. Pinna et al., Arterial baroreflex modulation of heart rate in chronic heart failure. Clinical and hemodynamic correlates and prognostic implications. Circulation 96, 3450–3458 (1997)

    Article  PubMed  CAS  Google Scholar 

  54. R.B. Simerly, C. Chang, M. Muramatsu, L.W. Swanson, Distribution of androgen and estrogen mRNA-containing cells in the rat brain: an in situ hybridization study. J. Comp. Neurol. 294, 76–95 (1990)

    Article  PubMed  CAS  Google Scholar 

  55. G.R. Ward, A.A. Abdel-Rahman, Orchiectomy or androgen receptor blockade attenuates baroreflex-mediated bradycardia in conscious rats. BMC Pharmacol. 6, 2 (2006)

    Article  PubMed  Google Scholar 

  56. F. Altamirano, C. Oyarce, P. Silva et al., Testosterone induces cardiomyocyte hypertrophy through mammalian target of rapamycin complex 1 pathway. J. Endocrinol. 202, 299–307 (2009)

    Article  PubMed  CAS  Google Scholar 

  57. T. Papamitsou, D. Barlaggiannis, V. Papaliagkas, E. Kotadinou, M. Dermentzopoulou-Theodoridou, Testosterone-induced hypertrophy, fibrosis and apoptosis of cardiac cells: an ultrastructural and immunohistochemical study. Med. Sci. Monit. 17, 266–273 (2011)

    Google Scholar 

Download references

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Volterrani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volterrani, M., Rosano, G. & Iellamo, F. Testosterone and heart failure. Endocrine 42, 272–277 (2012). https://doi.org/10.1007/s12020-012-9725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9725-9

Keywords

Navigation