Skip to main content

Advertisement

Log in

Chemerin: a potential endocrine link between obesity and type 2 diabetes

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Obesity and type 2 diabetes have reached epidemic levels and account for a substantial portion of the annual health expenditures of developed nations. While there is an abundance of epidemiological evidence demonstrating that obesity is a primary risk factor for developing type 2 diabetes, the mechanism(s) underlying this linkage are not completely understood. Given the enormous impact of these disorders on global health, considerable research effort has been devoted to elucidate the pathophysiological relationship between these two disorders. Two factors believed to contribute to the causal link between obesity and type 2 diabetes are chronic inflammation and altered secretion of adipose-derived signaling molecules (adipokines). Independent lines of investigation have implicated the novel adipokine chemerin as a regulator of adipogenesis, inflammation, and glucose metabolism through interactions with the cognate cell surface receptor chemokine-like receptor 1. Increased levels of chemerin that occur with obesity are hypothesized to be a causal factor in the development of type 2 diabetes as a consequence of dysregulation of the key physiological processes regulated by this adipokine. This review summarizes current research on the biological roles of chemerin and chemokine-like receptor 1, and highlights key questions to guide future research on the role of this adipokine in mediating obesity and the development of type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. National Institute of Health, Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults–the evidence report. Obes. Res. 6(Suppl 2), 51S–209S (1998)

    Google Scholar 

  2. H. Shamseddeen, J.Z. Getty, I.N. Hamdallah, M.R. Ali, Epidemiology and economic impact of obesity and type 2 diabetes. Surg. Clin. North. Am. 91(6), 1163–1172 (2011)

    Article  PubMed  Google Scholar 

  3. P.G. Kopelman, Obesity as a medical problem. Nature 404(6778), 635–643 (2000)

    PubMed  CAS  Google Scholar 

  4. O.T. Hardy, M.P. Czech, S. Corvera, What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes. Obes. 19(2), 81–87 (2012)

    PubMed  CAS  Google Scholar 

  5. J. Conde, M. Scotece, R. Gomez, V. Lopez, J.J. Gomez-Reino, F. Lago, O. Gualillo, Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. BioFactors 37(6), 413–420 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. E.E. Kershaw, J.S. Flier, Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89(6), 2548–2556 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. S.P. Poulos, D.B. Hausman, G.J. Hausman, The development and endocrine functions of adipose tissue. Mol. Cell. Endocrinol. 323(1), 20–34 (2010)

    Article  PubMed  CAS  Google Scholar 

  8. N. Ouchi, J.L. Parker, J.J. Lugus, K. Walsh, Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11(2), 85–97 (2011)

    Article  PubMed  CAS  Google Scholar 

  9. K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.F. Palin, Adiponectin action from head to toe. Endocrine 37(1), 11–32 (2010)

    Article  PubMed  CAS  Google Scholar 

  10. M. Bluher, Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine 41(2), 176–182 (2012)

    Article  PubMed  Google Scholar 

  11. M. Pardo, A. Roca-Rivada, L.M. Seoane, F.F. Casanueva, Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine 41(3), 374–383 (2012)

    Article  PubMed  CAS  Google Scholar 

  12. I. Castan-Laurell, C. Dray, C. Attane, T. Duparc, C. Knauf, P. Valet, Apelin, diabetes, and obesity. Endocrine 40(1), 1–9 (2011)

    Article  PubMed  CAS  Google Scholar 

  13. S. Baldasseroni, E. Mannucci, C. Di Serio, F. Orso, N. Bartoli, E. Mossello, A. Foschini, M. Monami, P. Valoti, S. Fumagalli, C. Colombi, S. Pellerito, G. Gensini, N. Marchionni, F. Tarantini, Resistin level in coronary artery disease and heart failure: the central role of kidney function. J Cardiovasc Med (Hagerstown) (2012)

  14. G.S. Hotamisligil, P. Arner, J.F. Caro, R.L. Atkinson, B.M. Spiegelman, Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95(5), 2409–2415 (1995)

    Article  PubMed  CAS  Google Scholar 

  15. M. Okamoto, M. Ohara-Imaizumi, N. Kubota, S. Hashimoto, K. Eto, T. Kanno, T. Kubota, M. Wakui, R. Nagai, M. Noda, S. Nagamatsu, T. Kadowaki, Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 51(5), 827–835 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. H. Sell, J. Eckel, Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation? Proc. Nutr. Soc. 68(4), 378–384 (2009)

    Article  PubMed  CAS  Google Scholar 

  17. R. Coppari, M. Ichinose, C.E. Lee, A.E. Pullen, C.D. Kenny, R.A. McGovern, V. Tang, S.M. Liu, T. Ludwig, S.C. Chua Jr, B.B. Lowell, J.K. Elmquist, The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1(1), 63–72 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. M. Yang, G. Yang, J. Dong, Y. Liu, H. Zong, H. Liu, G. Boden, L. Li, Elevated plasma levels of chemerin in newly diagnosed type 2 diabetes mellitus with hypertension. J. Investig. Med. 58(7), 883–886 (2010)

    PubMed  CAS  Google Scholar 

  19. J. Hirosumi, G. Tuncman, L. Chang, C.Z. Gorgun, K.T. Uysal, K. Maeda, M. Karin, G.S. Hotamisligil, A central role for JNK in obesity and insulin resistance. Nature 420(6913), 333–336 (2002)

    Article  PubMed  CAS  Google Scholar 

  20. S.I. Itani, N.B. Ruderman, F. Schmieder, G. Boden, Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51(7), 2005–2011 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. M.C. Arkan, A.L. Hevener, F.R. Greten, S. Maeda, Z.W. Li, J.M. Long, A. Wynshaw-Boris, G. Poli, J. Olefsky, M. Karin, IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11(2), 191–198 (2005)

    Article  PubMed  CAS  Google Scholar 

  22. T.J. Guzik, D. Mangalat, R. Korbut, Adipocytokines—novel link between inflammation and vascular function? J. Physiol. Pharmacol. 57(4), 505–528 (2006)

    PubMed  CAS  Google Scholar 

  23. T. Yamauchi, Y. Nio, T. Maki, M. Kobayashi, T. Takazawa, M. Iwabu, M. Okada-Iwabu, S. Kawamoto, N. Kubota, T. Kubota, Y. Ito, J. Kamon, A. Tsuchida, K. Kumagai, H. Kozono, Y. Hada, H. Ogata, K. Tokuyama, M. Tsunoda, T. Ide, K. Murakami, M. Awazawa, I. Takamoto, P. Froguel, K. Hara, K. Tobe, R. Nagai, K. Ueki, T. Kadowaki, Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13(3), 332–339 (2007)

    Article  PubMed  CAS  Google Scholar 

  24. T.P. Combs, U.B. Pajvani, A.H. Berg, Y. Lin, L.A. Jelicks, M. Laplante, A.R. Nawrocki, M.W. Rajala, A.F. Parlow, L. Cheeseboro, Y.Y. Ding, R.G. Russell, D. Lindemann, A. Hartley, G.R. Baker, S. Obici, Y. Deshaies, M. Ludgate, L. Rossetti, P.E. Scherer, A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145(1), 367–383 (2004)

    Article  PubMed  CAS  Google Scholar 

  25. A. Petrone, S. Zavarella, A. Caiazzo, G. Leto, M. Spoletini, S. Potenziani, J. Osborn, A. Vania, R. Buzzetti, The promoter region of the adiponectin gene is a determinant in modulating insulin sensitivity in childhood obesity. Obesity (Silver Spring) 14(9), 1498–1504 (2006)

    Article  CAS  Google Scholar 

  26. S.M. Ruchat, R.J. Loos, T. Rankinen, M.C. Vohl, S.J. Weisnagel, J.P. Despres, C. Bouchard, L. Perusse, Associations between glucose tolerance, insulin sensitivity and insulin secretion phenotypes and polymorphisms in adiponectin and adiponectin receptor genes in the Quebec Family Study. Diabet. Med. 25(4), 400–406 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. M.C. Ernst, C.J. Sinal, Chemerin: at the crossroads of inflammation and obesity. Trends Endocrinol. Metab. 21(11), 660–667 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. D. Stejskal, M. Karpisek, Z. Hanulova, M. Svestak, Chemerin is an independent marker of the metabolic syndrome in a Caucasian population–a pilot study. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 152(2), 217–221 (2008)

    PubMed  CAS  Google Scholar 

  29. J. Weigert, M. Neumeier, J. Wanninger, M. Filarsky, S. Bauer, R. Wiest, S. Farkas, M.N. Scherer, A. Schaffler, C. Aslanidis, J. Scholmerich, C. Buechler, Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. (Oxf) 72(3), 342–348 (2010)

    Article  CAS  Google Scholar 

  30. D. M. Ouwens, M. Bekaert, B. Lapauw, Y. V. Nieuwenhove, S. Lehr, S. Hartwig, P. Calders, J. M. Kaufman, H. Sell, J. Eckel, J. B. Ruige, Chemerin as biomarker for insulin sensitivity in males without typical characteristics of metabolic syndrome. Arch Physiol Biochem (2012) [epub ahead of print]

  31. M. Bluher, A. Rudich, N. Kloting, R. Golan, Y. Henkin, E. Rubin, D. Schwarzfuchs, Y. Gepner, M.J. Stampfer, M. Fiedler, J. Thiery, M. Stumvoll, I. Shai, Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. Diabetes Care 35(2), 342–349 (2012)

    Article  PubMed  Google Scholar 

  32. R. Chakaroun, M. Raschpichler, N. Kloting, A. Oberbach, G. Flehmig, M. Kern, M.R. Schon, E. Shang, T. Lohmann, M. Dressler, M. Fasshauer, M. Stumvoll, M. Bluher, Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism 61(5), 706–714 (2011)

    Article  PubMed  Google Scholar 

  33. Verrijn Stuart, Altered plasma adipokine levels and in vitro adipocyte differentiation in pediatric type 1 diabetes. J. Clin. Endocrinol. Metab. 97(2), 463–472 (2012)

    Article  CAS  Google Scholar 

  34. Y.J. Hah, N.K. Kim, M.K. Kim, H.S. Kim, S.H. Hur, H.J. Yoon, Y.N. Kim, K.G. Park, Relationship between chemerin levels and cardiometabolic parameters and degree of coronary stenosis in Korean patients with coronary artery disease. Diabet. Metab. J. 35(3), 248–254 (2011)

    Article  Google Scholar 

  35. H.O. El-Mesallamy, M.O. El-Derany, N.M. Hamdy, Serum omentin-1 and chemerin levels are interrelated in patients with Type 2 diabetes mellitus with or without ischaemic heart disease. Diabet. Med. 28(10), 1194–1200 (2011)

    Article  PubMed  CAS  Google Scholar 

  36. M. Lehrke, A. Becker, M. Greif, R. Stark, R.P. Laubender, F. von Ziegler, C. Lebherz, J. Tittus, M. Reiser, C. Becker, B. Goke, A.W. Leber, K.G. Parhofer, U.C. Broedl, Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur. J. Endocrinol. 161(2), 339–344 (2009)

    Article  PubMed  CAS  Google Scholar 

  37. K. Bozaoglu, K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, D. Segal, Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148(10), 4687–4694 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. C. Ress, A. Tschoner, J. Engl, A. Klaus, H. Tilg, C.F. Ebenbichler, J.R. Patsch, S. Kaser, Effect of bariatric surgery on circulating chemerin levels. Eur. J. Clin. Invest. 40(3), 277–280 (2010)

    Article  PubMed  CAS  Google Scholar 

  39. H. Sell, A. Divoux, C. Poitou, A. Basdevant, J.L. Bouillot, P. Bedossa, J. Tordjman, J. Eckel, K. Clement, Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 95(6), 2892–2896 (2010)

    Article  PubMed  CAS  Google Scholar 

  40. B.K. Tan, J. Chen, S. Farhatullah, R. Adya, J. Kaur, D. Heutling, K.C. Lewandowski, J.P. O’Hare, H. Lehnert, H.S. Randeva, Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 58(9), 1971–1977 (2009)

    Article  PubMed  CAS  Google Scholar 

  41. S. Nagpal, S. Patel, H. Jacobe, D. DiSepio, C. Ghosn, M. Malhotra, M. Teng, M. Duvic, R.A. Chandraratna, Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Invest. Dermatol. 109(1), 91–95 (1997)

    Article  PubMed  CAS  Google Scholar 

  42. V. Wittamer, J.D. Franssen, M. Vulcano, J.F. Mirjolet, E. Le Poul, I. Migeotte, S. Brezillon, R. Tyldesley, C. Blanpain, M. Detheux, A. Mantovani, S. Sozzani, G. Vassart, M. Parmentier, D. Communi, Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198(7), 977–985 (2003)

    Article  PubMed  CAS  Google Scholar 

  43. K.B. Goralski, T.C. McCarthy, E.A. Hanniman, B.A. Zabel, E.C. Butcher, S.D. Parlee, S. Muruganandan, C.J. Sinal, Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282(38), 28175–28188 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. S. Muruganandan, A.A. Roman, C.J. Sinal, Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J. Bone Miner. Res. 25(2), 222–234 (2010)

    Article  PubMed  CAS  Google Scholar 

  45. S. Muruganandan, S.D. Parlee, J.L. Rourke, M.C. Ernst, K.B. Goralski, C.J. Sinal, Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J. Biol. Chem. 286(27), 23982–23995 (2011)

    Article  PubMed  CAS  Google Scholar 

  46. B.A. Zabel, S. Nakae, L. Zuniga, J.Y. Kim, T. Ohyama, C. Alt, J. Pan, H. Suto, D. Soler, S.J. Allen, T.M. Handel, C.H. Song, S.J. Galli, E.C. Butcher, Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J. Exp. Med. 205(10), 2207–2220 (2008)

    Article  PubMed  CAS  Google Scholar 

  47. G. Barnea, W. Strapps, G. Herrada, Y. Berman, J. Ong, B. Kloss, R. Axel, K.J. Lee, The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA 105(1), 64–69 (2008)

    Article  PubMed  CAS  Google Scholar 

  48. X.Y. Du, B.A. Zabel, T. Myles, S.J. Allen, T.M. Handel, P.P. Lee, E.C. Butcher, L.L. Leung, Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J. Biol. Chem. 284(2), 751–758 (2009)

    Article  PubMed  CAS  Google Scholar 

  49. V. Wittamer, B. Bondue, A. Guillabert, G. Vassart, M. Parmentier, D. Communi, Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175(1), 487–493 (2005)

    PubMed  CAS  Google Scholar 

  50. A. Guillabert, V. Wittamer, B. Bondue, V. Godot, V. Imbault, M. Parmentier, D. Communi, Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. J. Leukoc. Biol. 84(6), 1530–1538 (2008)

    Article  PubMed  CAS  Google Scholar 

  51. H. John, J. Hierer, O. Haas, W.G. Forssmann, Quantification of angiotensin-converting-enzyme-mediated degradation of human chemerin 145–154 in plasma by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal. Biochem. 362(1), 117–125 (2007)

    Article  PubMed  CAS  Google Scholar 

  52. B.A. Zabel, S.J. Allen, P. Kulig, J.A. Allen, J. Cichy, T.M. Handel, E.C. Butcher, Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280(41), 34661–34666 (2005)

    Article  PubMed  CAS  Google Scholar 

  53. V. Wittamer, F. Gregoire, P. Robberecht, G. Vassart, D. Communi, M. Parmentier, The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J. Biol. Chem. 279(11), 9956–9962 (2004)

    Article  PubMed  CAS  Google Scholar 

  54. W. Meder, M. Wendland, A. Busmann, C. Kutzleb, N. Spodsberg, H. John, R. Richter, D. Schleuder, M. Meyer, W.G. Forssmann, Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 555(3), 495–499 (2003)

    Article  PubMed  CAS  Google Scholar 

  55. Y. Yamaguchi, X.Y. Du, L. Zhao, J. Morser, L.L. Leung, Proteolytic cleavage of chemerin protein is necessary for activation to the active form, Chem157S, which functions as a signaling molecule in glioblastoma. J. Biol. Chem. 286(45), 39510–39519 (2011)

    Article  PubMed  CAS  Google Scholar 

  56. L. Zhao, Y. Yamaguchi, S. Sharif, X.Y. Du, J.J. Song, D.M. Lee, L.D. Recht, W.H. Robinson, J. Morser, L.L. Leung, Chemerin158 K protein is the dominant chemerin isoform in synovial and cerebrospinal fluids but not in plasma. J. Biol. Chem. 286(45), 39520–39527 (2011)

    Article  PubMed  CAS  Google Scholar 

  57. B.A. Zabel, A.M. Silverio, E.C. Butcher, Chemokine-like receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J. Immunol. 174(1), 244–251 (2005)

    PubMed  CAS  Google Scholar 

  58. W. Vermi, E. Riboldi, V. Wittamer, F. Gentili, W. Luini, S. Marrelli, A. Vecchi, J.D. Franssen, D. Communi, L. Massardi, M. Sironi, A. Mantovani, M. Parmentier, F. Facchetti, S. Sozzani, Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J. Exp. Med. 201(4), 509–515 (2005)

    Article  PubMed  CAS  Google Scholar 

  59. S. Parolini, A. Santoro, E. Marcenaro, W. Luini, L. Massardi, F. Facchetti, D. Communi, M. Parmentier, A. Majorana, M. Sironi, G. Tabellini, A. Moretta, S. Sozzani, The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109(9), 3625–3632 (2007)

    Article  PubMed  CAS  Google Scholar 

  60. R. Hart, D.R. Greaves, Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J. Immunol. 185(6), 3728–3739 (2010)

    Article  PubMed  CAS  Google Scholar 

  61. M. Kukla, K. Zwirska-Korczala, A. Gabriel, M. Waluga, I. Warakomska, B. Szczygiel, A. Berdowska, W. Mazur, E. Wozniak-Grygiel, W. Kryczka, Chemerin, vaspin and insulin resistance in chronic hepatitis C. J. Viral. Hepat. 17(9), 661–667 (2010)

    PubMed  CAS  Google Scholar 

  62. H. Nakajima, K. Nakajima, Y. Nagano, M. Yamamoto, M. Tarutani, M. Takahashi, Y. Takahashi, S. Sano, Circulating level of chemerin is upregulated in psoriasis. J. Dermatol. Sci. 60(1), 45–47 (2010)

    Article  PubMed  CAS  Google Scholar 

  63. M. Arita, F. Bianchini, J. Aliberti, A. Sher, N. Chiang, S. Hong, R. Yang, N.A. Petasis, C.N. Serhan, Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201(5), 713–722 (2005)

    Article  PubMed  CAS  Google Scholar 

  64. M. Wan, C. Godson, P.J. Guiry, B. Agerberth, J.Z. Haeggstrom, Leukotriene B4/antimicrobial peptide LL-37 proinflammatory circuits are mediated by BLT1 and FPR2/ALX and are counterregulated by lipoxin A4 and resolvin E1. FASEB J. 25(5), 1697–1705 (2011)

    Article  PubMed  CAS  Google Scholar 

  65. M. Arita, T. Ohira, Y.P. Sun, S. Elangovan, N. Chiang, C.N. Serhan, Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178(6), 3912–3917 (2007)

    PubMed  CAS  Google Scholar 

  66. J.L. Cash, R. Hart, A. Russ, J.P. Dixon, W.H. Colledge, J. Doran, A.G. Hendrick, M.B. Carlton, D.R. Greaves, Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J. Exp. Med. 205(4), 767–775 (2008)

    Article  PubMed  CAS  Google Scholar 

  67. J.L. Cash, A.R. Christian, D.R. Greaves, Chemerin peptides promote phagocytosis in a ChemR23- and Syk-dependent manner. J. Immunol. 184(9), 5315–5324 (2010)

    Article  PubMed  CAS  Google Scholar 

  68. S. Luangsay, V. Wittamer, B. Bondue, O. De Henau, L. Rouger, M. Brait, J.D. Franssen, P. de Nadai, F. Huaux, M. Parmentier, Mouse ChemR23 is expressed in dendritic cell subsets and macrophages, and mediates an anti-inflammatory activity of chemerin in a lung disease model. J. Immunol. 183(10), 6489–6499 (2009)

    Article  PubMed  CAS  Google Scholar 

  69. K. Shimamura, M. Matsuda, Y. Miyamoto, R. Yoshimoto, T. Seo, S. Tokita, Identification of a stable chemerin analog with potent activity toward ChemR23. Peptides 30(8), 1529–1538 (2009)

    Article  PubMed  CAS  Google Scholar 

  70. M.C. Ernst, I.D. Haidl, L.A. Zuniga, H.J. Dranse, J.L. Rourke, B.A. Zabel, E.C. Butcher, C.J. Sinal, Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology 153(2), 672–682 (2012)

    Article  PubMed  CAS  Google Scholar 

  71. S. Kralisch, S. Weise, G. Sommer, J. Lipfert, U. Lossner, M. Bluher, M. Stumvoll, M. Fasshauer, Interleukin-1beta induces the novel adipokine chemerin in adipocytes in vitro. Regul. Pept. 154(1–3), 102–106 (2009)

    Article  PubMed  CAS  Google Scholar 

  72. M. Takahashi, Y. Takahashi, K. Takahashi, F.N. Zolotaryov, K.S. Hong, R. Kitazawa, K. Iida, Y. Okimura, H. Kaji, S. Kitazawa, M. Kasuga, K. Chihara, Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582(5), 573–578 (2008)

    Article  PubMed  CAS  Google Scholar 

  73. H. Sell, J. Laurencikiene, A. Taube, K. Eckardt, A. Cramer, A. Horrighs, P. Arner, J. Eckel, Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 58(12), 2731–2740 (2009)

    Article  PubMed  CAS  Google Scholar 

  74. M.C. Ernst, M. Issa, K.B. Goralski, C.J. Sinal, Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology 151(5), 1998–2007 (2010)

    Article  PubMed  CAS  Google Scholar 

  75. M. Takahashi, Y. Okimura, G. Iguchi, H. Nishizawa, M. Yamamoto, K. Suda, R. Kitazawa, W. Fujimoto, K. Takahashi, F.N. Zolotaryov, K.S. Hong, H. Kiyonari, T. Abe, H. Kaji, S. Kitazawa, M. Kasuga, K. Chihara, Y. Takahashi, Chemerin regulates beta-cell function in mice. Sci. Rep. 1, 123 (2011)

    PubMed  CAS  Google Scholar 

  76. Q. Yan, Y. Zhang, J. Hong, W. Gu, M. Dai, J. Shi, Y. Zhai, W. Wang, X. Li, G. Ning, The association of serum chemerin level with risk of coronary artery disease in Chinese adults. Endocrine 41(2), 281–288 (2012)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Sinal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roman, A.A., Parlee, S.D. & Sinal, C.J. Chemerin: a potential endocrine link between obesity and type 2 diabetes. Endocrine 42, 243–251 (2012). https://doi.org/10.1007/s12020-012-9698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9698-8

Keywords

Navigation