Skip to main content

Advertisement

Log in

Effects of kisspeptin on parameters of the HPA axis

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The hypothalamo–pituitary–adrenal (HPA) and hypothalamo–pituitary–gonadal (HPG) axes have an intricate cross talk that results in the inhibition of reproductive functions during periods of chronic physiological or psychological stress. Recent studies have shown that kisspeptin neurons have projections to many non-reproductive areas of the brain including the paraventricular nucleus (PVN) of the hypothalamus, thereby providing evidence of an anatomical framework for kisspeptin to regulate the HPA axis. In this study, we tested as to whether kisspeptin modulates the HPA axis at three potential levels of regulation: (1) transcription of stress-related genes CRH, AVP, and oxytocin (OXY); (2) release of neuropeptides from PVN-derived neuronal cells via mobilization of intracellular calcium stores; and (3) in vivo regulation of the HPA axis under basal and stress-induced conditions in adult male rats. Overall, our data showed that kisspeptin did not alter basal, or stress-induced HPA axis activity (plasma corticosterone (CORT) and adrenocorticotropin hormone (ACTH)) in adult male rats and had modest, yet significant effects on CRH, AVP, and OXY gene expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.L. Berga, M.D. Marcus, T.L. Loucks, S. Hlastala, R. Ringham, M.A. Krohn, Recovery of ovarian activity in women with functional hypothalamic amenorrhea who were treated with cognitive behavior therapy. Fertil. Steril. 80, 976–981 (2003)

    Article  PubMed  Google Scholar 

  2. B. Brundu, T.L. Loucks, L.J. Adler, J.L. Cameron, S.L. Berga, Increased cortisol in the cerebrospinal fluid of women with functional hypothalamic amenorrhea. J. Clin. Endocrinol. Metab. 91, 1561–1565 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. G.P. Chrousos, D.J. Torpy, P.W. Gold, Interactions between the hypothalamic–pituitary–adrenal axis and the female reproductive system: clinical implications. Ann. Intern. Med. 129, 229–240 (1998)

    PubMed  CAS  Google Scholar 

  4. U.R. Chandran, B. Attardi, R. Friedman, K.W. Dong, J.L. Roberts, D.B. DeFranco, Glucocorticoid receptor-mediated repression of gonadotropin-releasing hormone promoter activity in GT1 hypothalamic cell lines. Endocrinology 134, 1467–1474 (1994)

    Article  PubMed  CAS  Google Scholar 

  5. V. Viau, M.J. Meaney, Testosterone-dependent variations in plasma and intrapituitary corticosteroid binding globulin and stress hypothalamic–pituitary–adrenal activity in the male rat. J. Endocrinol. 181, 223–231 (2004)

    Article  PubMed  CAS  Google Scholar 

  6. M.J. Weiser, R.J. Handa, Estrogen impairs glucocorticoid dependent negative feedback on the hypothalamic–pituitary–adrenal axis via estrogen receptor alpha within the hypothalamus. Neuroscience 159, 883–895 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. B. Bingham, V. Viau, Neonatal gonadectomy and adult testosterone replacement suggest an involvement of limbic arginine vasopressin and androgen receptors in the organization of the hypothalamic–pituitary–adrenal axis. Endocrinology 149, 3581–3591 (2008)

    Article  PubMed  CAS  Google Scholar 

  8. B.N. Roy, R.L. Reid, D.A. Van Vugt, The effects of estrogen and progesterone on corticotropin-releasing hormone and arginine vasopressin messenger ribonucleic acid levels in the paraventricular nucleus and supraoptic nucleus of the rhesus monkey. Endocrinology 140, 2191–2198 (1999)

    Article  PubMed  CAS  Google Scholar 

  9. V. Viau, A. Chu, L. Soriano, M.F. Dallman, Independent and overlapping effects of corticosterone and testosterone on corticotropin-releasing hormone and arginine vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus and stress-induced adrenocorticotropic hormone release. J. Neurosci. 19, 6684–6693 (1999)

    PubMed  CAS  Google Scholar 

  10. V. Viau, P. Lee, J. Sampson, J. Wu, A testicular influence on restraint-induced activation of medial parvocellular neurons in the paraventricular nucleus in the male rat. Endocrinology 144, 3067–3075 (2003)

    Article  PubMed  CAS  Google Scholar 

  11. M.L. Gottsch, M.J. Cunningham, J.T. Smith, S.M. Popa, B.V. Acohido, W.F. Crowley, S. Seminara, D.K. Clifton, R.A. Steiner, A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145, 4073–4077 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. S.K. Han, M.L. Gottsch, K.J. Lee, S.M. Popa, J.T. Smith, S.K. Jakawich, D.K. Clifton, R.A. Steiner, A.E. Herbison, Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J. Neurosci. 25, 11349–11356 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. M.S. Irwig, G.S. Fraley, J.T. Smith, B.V. Acohido, S.M. Popa, M.J. Cunningham, M.L. Gottsch, D.K. Clifton, R.A. Steiner, Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80, 264–272 (2004)

    Article  PubMed  CAS  Google Scholar 

  14. S. Messager, E.E. Chatzidaki, D. Ma, A.G. Hendrick, D. Zahn, J. Dixon, R.R. Thresher, I. Malinge, D. Lomet, M.B. Carlton, W.H. Colledge, A. Caraty, S.A. Aparicio, Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 102, 1761–1766 (2005)

    Article  PubMed  CAS  Google Scholar 

  15. V.M. Navarro, J.M. Castellano, R. Fernandez-Fernandez, M.L. Barreiro, J. Roa, J.E. Sanchez-Criado, E. Aguilar, C. Dieguez, L. Pinilla, M. Tena-Sempere, Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145, 4565–4574 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. M. Patterson, K.G. Murphy, E.L. Thompson, S. Patel, M.A. Ghatei, S.R. Bloom, Administration of kisspeptin-54 into discrete regions of the hypothalamus potently increases plasma luteinising hormone and testosterone in male adult rats. J. Neuroendocrinol. 18, 349–354 (2006)

    Article  PubMed  CAS  Google Scholar 

  17. E.L. Thompson, M. Patterson, K.G. Murphy, K.L. Smith, W.S. Dhillo, J.F. Todd, M.A. Ghatei, S.R. Bloom, Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic–pituitary–gonadal axis. J. Neuroendocrinol. 16, 850–858 (2004)

    Article  PubMed  CAS  Google Scholar 

  18. J. Clarkson, X. d’Anglemont de Tassigny, W.H. Colledge, A. Caraty, A.E. Herbison, Distribution of kisspeptin neurones in the adult female mouse brain. J. Neuroendocrinol. 21, 673–682 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. A.H. Bentsen, L. Ansel, V. Simonneaux, M. Tena-Sempere, A. Juul, J.D. Mikkelsen, Maturation of kisspeptinergic neurons coincides with puberty onset in male rats. Peptides 31, 275–283 (2010)

    Article  PubMed  CAS  Google Scholar 

  20. N. de Roux, E. Genin, J.C. Carel, F. Matsuda, J.L. Chaussain, E. Milgrom, Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 100, 10972–10976 (2003)

    Article  PubMed  Google Scholar 

  21. S. Funes, J.A. Hedrick, G. Vassileva, L. Markowitz, S. Abbondanzo, A. Golovko, S. Yang, F.J. Monsma, E.L. Gustafson, The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem. Biophys. Res. Commun. 312, 1357–1363 (2003)

    Article  PubMed  CAS  Google Scholar 

  22. S.B. Seminara, S. Messager, E.E. Chatzidaki, R.R. Thresher, J.S. Acierno Jr, J.K. Shagoury, Y. Bo-Abbas, W. Kuohung, K.M. Schwinof, A.G. Hendrick, D. Zahn, J. Dixon, U.B. Kaiser, S.A. Slaugenhaupt, J.F. Gusella, S. O’Rahilly, M.B. Carlton, W.F. Crowley Jr, S.A. Aparicio, W.H. Colledge, The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003)

    Article  PubMed  CAS  Google Scholar 

  23. T.R. Pak, G.R. Lynch, P.S. Tsai, Testosterone and estrogen act via different pathways to inhibit puberty in the male Siberian hamster (Phodopus sungorus). Endocrinology 142, 3309–3316 (2001)

    Article  PubMed  CAS  Google Scholar 

  24. M. Kotani, M. Detheux, A. Vandenbogaerde, D. Communi, J.M. Vanderwinden, E. Le Poul, S. Brezillon, R. Tyldesley, N. Suarez-Huerta, F. Vandeput, C. Blanpain, S.N. Schiffmann, G. Vassart, M. Parmentier, The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem. 276, 34631–34636 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. A.I. Muir, L. Chamberlain, N.A. Elshourbagy, D. Michalovich, D.J. Moore, A. Calamari, P.G. Szekeres, H.M. Sarau, J.K. Chambers, P. Murdock, K. Steplewski, U. Shabon, J.E. Miller, S.E. Middleton, J.G. Darker, C.G. Larminie, S. Wilson, D.J. Bergsma, P. Emson, R. Faull, K.L. Philpott, D.C. Harrison, AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem. 276, 28969–28975 (2001)

    Article  PubMed  CAS  Google Scholar 

  26. S. Constantin, C.S. Caligioni, S. Stojilkovic, S. Wray, Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin-releasing hormone-1 neurons. Endocrinology 150, 1400–1412 (2009)

    Article  PubMed  CAS  Google Scholar 

  27. X. Liu, K. Lee, A.E. Herbison, Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 149, 4605–4614 (2008)

    Article  PubMed  CAS  Google Scholar 

  28. A.E. Oakley, D.K. Clifton, R.A. Steiner, Kisspeptin signaling in the brain. Endocr. Rev. 30, 713–743 (2009)

    Article  PubMed  CAS  Google Scholar 

  29. I.F. Bielsky, S.B. Hu, K.L. Szegda, H. Westphal, L.J. Young, Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29, 483–493 (2004)

    Article  PubMed  CAS  Google Scholar 

  30. Z. Wang, G.J. De Vries, Testosterone effects on paternal behavior and vasopressin immunoreactive projections in prairie voles (Microtus ochrogaster). Brain Res. 631, 156–160 (1993)

    Article  PubMed  CAS  Google Scholar 

  31. R.M. Bluthe, G. Gheusi, R. Dantzer, Gonadal steroids influence the involvement of arginine vasopressin in social recognition in mice. Psychoneuroendocrinology 18, 323–335 (1993)

    Article  PubMed  CAS  Google Scholar 

  32. R.M. Bluthe, J. Schoenen, R. Dantzer, Androgen-dependent vasopressinergic neurons are involved in social recognition in rats. Brain Res. 519, 150–157 (1990)

    Article  PubMed  CAS  Google Scholar 

  33. I.D. Neumann, L. Torner, A. Wigger, Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95, 567–575 (2000)

    Article  PubMed  CAS  Google Scholar 

  34. J.A. Amico, R.C. Mantella, R.R. Vollmer, X. Li, Anxiety and stress responses in female oxytocin deficient mice. J. Neuroendocrinol. 16, 319–324 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. A. Blume, O.J. Bosch, S. Miklos, L. Torner, L. Wales, M. Waldherr, I.D. Neumann, Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. Eur. J. Neurosci. 27, 1947–1956 (2008)

    Article  PubMed  Google Scholar 

  36. F. Gomez, S. Manalo, M.F. Dallman, Androgen-sensitive changes in regulation of restraint-induced adrenocorticotropin secretion between early and late puberty in male rats. Endocrinology 145, 59–70 (2004)

    Article  PubMed  CAS  Google Scholar 

  37. D.M. Vazquez, Stress and the developing limbic–hypothalamic–pituitary–adrenal axis. Psychoneuroendocrinology 23, 663–700 (1998)

    Article  PubMed  CAS  Google Scholar 

  38. T.M. Plant, M.L. Barker-Gibb, Neurobiological mechanisms of puberty in higher primates. Hum Reprod Update 10, 67–77 (2004)

    Article  PubMed  CAS  Google Scholar 

  39. K. Takumi, N. Iijima, H. Ozawa, Developmental changes in the expression of kisspeptin mRNA in rat hypothalamus. J. Mol. Neurosci. 43(2), 138–145 (2011)

    Google Scholar 

  40. L.H. Burgess, R.J. Handa, Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Endocrinology 131, 1261–1269 (1992)

    Article  PubMed  CAS  Google Scholar 

  41. C.M. McCormick, W. Linkroum, B.J. Sallinen, N.W. Miller, Peripheral and central sex steroids have differential effects on the HPA axis of male and female rats. Stress 5, 235–247 (2002)

    Article  PubMed  CAS  Google Scholar 

  42. M. Girotti, T.W. Pace, R.I. Gaylord, B.A. Rubin, J.P. Herman, R.L. Spencer, Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain. Neuroscience 138, 1067–1081 (2006)

    Article  PubMed  CAS  Google Scholar 

  43. J.S. Kinsey-Jones, X.F. Li, A.M. Knox, E.S. Wilkinson, X.L. Zhu, A.A. Chaudhary, S.R. Milligan, S.L. Lightman, K.T. O’Byrne, Down-regulation of hypothalamic kisspeptin and its receptor, Kiss1r, mRNA expression is associated with stress-induced suppression of luteinising hormone secretion in the female rat. J. Neuroendocrinol. 21, 20–29 (2009)

    Article  PubMed  CAS  Google Scholar 

  44. S. Tovar, M.J. Vazquez, V.M. Navarro, R. Fernandez-Fernandez, J.M. Castellano, E. Vigo, J. Roa, F.F. Casanueva, E. Aguilar, L. Pinilla, C. Dieguez, M. Tena-Sempere, Effects of single or repeated intravenous administration of kisspeptin upon dynamic LH secretion in conscious male rats. Endocrinology 147, 2696–2704 (2006)

    Article  PubMed  CAS  Google Scholar 

  45. E. Gutierrez-Pascual, A.J. Martinez-Fuentes, L. Pinilla, M. Tena-Sempere, M.M. Malagon, J.P. Castano, Direct pituitary effects of kisspeptin: activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion. J. Neuroendocrinol. 19, 521–530 (2007)

    Article  PubMed  CAS  Google Scholar 

  46. N. Richard, G. Galmiche, S. Corvaisier, A. Caraty, M.L. Kottler, KiSS-1 and GPR54 genes are co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin-releasing hormone. J. Neuroendocrinol. 20, 381–393 (2008)

    Article  PubMed  CAS  Google Scholar 

  47. X. d’Anglemont de Tassigny, L.A. Fagg, M.B. Carlton, W.H. Colledge, Kisspeptin can stimulate gonadotropin-releasing hormone (GnRH) release by a direct action at GnRH nerve terminals. Endocrinology 149, 3926–3932 (2008)

    Article  PubMed  Google Scholar 

  48. G.L. Kim, S.S. Dhillon, D.D. Belsham, Kisspeptin directly regulates neuropeptide Y synthesis and secretion via the ERK1/2 and p38 mitogen-activated protein kinase signaling pathways in NPY-secreting hypothalamic neurons. Endocrinology 151(10), 5038–5047 (2010)

    Google Scholar 

  49. H.J. Novaira, Y. Ng, A. Wolfe, S. Radovick, Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines. Mol. Cell Endocrinol. 311(1–2), 126–134 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni R. Pak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, Y.S., Mott, N.N. & Pak, T.R. Effects of kisspeptin on parameters of the HPA axis. Endocr 39, 220–228 (2011). https://doi.org/10.1007/s12020-011-9439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9439-4

Keywords

Navigation