Skip to main content

Advertisement

Log in

Skeletal Changes Associated with Osteoarthritis

  • Review Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a degenerative joint disorder in which progressive articular cartilage loss occurs alongside pathological changes in subchondral bone and other joint tissues. The pathophysiological role of bone in OA has been a point of interest for many years and has resurfaced again in recent years as a potential target for new treatments. Articular cartilage and subchondral bone together form the osteochondral unit. Its homeostasis and integrity are reliant on biochemical crosstalk and biomechanical interplay between the two. Subchondral bone, with its relatively greater stiffness and strength, provides mechanical support to the overlying cartilage and absorbs much of the mechanical force transmitted through the joint. Mechanical instability in osteoarthritic joints is thought to be a significant risk-factor in joint disease, due to the mechano-sensitive nature of many of its native tissues. Although the progression of joint disease remains incompletely understood, significant changes in subchondral bone remodelling, structure, composition, and mechanical properties have been documented in animal and human studies of OA. The purpose of this review is to explore and discuss these bony changes associated with disease and, in particular, contextualise the basic science and clinical literature on the role of subchondral bone in OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. The burden of musculoskeletal conditions at the start of the new millennium. World Health Organ Tech Rep Ser. 2003.

  2. Murphy L, Schwartz TA, Helmick CG, Renner JB, Tudor G, Koch G, et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Care Res. 2008;59:1207–13.

    Google Scholar 

  3. Murphy LB, Helmick CG, Schwartz TA, Renner JB, Tudor G, Koch GG, et al. One in four people may develop symptomatic hip osteoarthritis in his or her lifetime. Osteoarthr Cartil. 2010;18:1372–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Aspden RM, Saunders FR. Osteoarthritis as an organ disease: from the cradle to the grave. Eur Cells Mater. 2019;37:74–87.

    CAS  Google Scholar 

  5. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–707.

    PubMed  PubMed Central  Google Scholar 

  6. Radin EL, Paul IL, Lowy M. A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. J Bone Joint Surg Am. 1970;52:444–56.

    CAS  PubMed  Google Scholar 

  7. Radin EL, Paul IL. Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone. Arthritis Rheum. 1970;13:139–44.

    CAS  PubMed  Google Scholar 

  8. Malekipour F, Whitton C, Oetomo D, Lee PVS. Shock absorbing ability of articular cartilage and subchondral bone under impact compression. J Mech Behav Biomed Mater. 2013;26:127–35.

    PubMed  Google Scholar 

  9. Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016;19.

  10. Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8:665.

    CAS  PubMed  Google Scholar 

  11. Kwan Tat S, Lajeunesse D, Pelletier JP, Martel-Pelletier J. Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol. 2010;24:51–70.

    PubMed  Google Scholar 

  12. Bettica P, Cline G, Hart DJ, Meyer J, Spector TD. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum. 2002;46(12):3178–84.

    PubMed  Google Scholar 

  13. Benske J, Schünke M, Tillmann B. Subchondral bone formation in arthrosis: polychrome labeling studies in mice. Acta Orthop. 1988;59:536–41.

    CAS  Google Scholar 

  14. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19:704–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 2004;50:1193–206.

    CAS  PubMed  Google Scholar 

  16. Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong LT. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone. 2006;38:234–43.

    Google Scholar 

  17. Pastoureau PC, Chomel AC, Bonnet J. Evidence of early subchondral bone changes in the meniscectomized guinea pig. A densitometric study using dual-energy X-ray absorptiometry subregional analysis. Osteoarthr Cartil. 1999;7:466–73.

    CAS  PubMed  Google Scholar 

  18. Dedrick DK, Goldstein SA, Brandt KD, O’Connor BL, Goulet RW, Albrecht M. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum. 1993;36:1460–7.

    CAS  PubMed  Google Scholar 

  19. Brandt KD, Myers SL, Burr D, Albrecht M. Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum. 1991;34:1560–70.

    CAS  PubMed  Google Scholar 

  20. Intema F, Sniekers YH, Weinans H, Vianen ME, Yocum SA, Zuurmond AMM, et al. Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis. J Bone Miner Res. 2010;25:1650–7.

    PubMed  Google Scholar 

  21. Pelletier JP, Boileau C, Brunet J, Boily M, Lajeunesse D, Reboul P, et al. The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone. 2004;34:527–38.

    CAS  PubMed  Google Scholar 

  22. Botter SM, Van Osch GJVM, Clockaerts S, Waarsing JH, Weinans H, Van Leeuwen JPTM. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum. 2011;63(9):2690–9.

    PubMed  Google Scholar 

  23. Ko FC, Dragomir CL, Plumb DA, Hsia AW, Adebayo OO, Goldring SR, et al. Progressive cell-mediated changes in articular cartilage and bone in mice are initiated by a single session of controlled cyclic compressive loading. J Orthop Res. 2016;34:1941–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mansell JP, Bailey AJ. Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest. 1998;101:1596–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bailey AJ, Mansell JP, Sims TJ, Banse X. Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology. 2004;41:349–58.

    CAS  PubMed  Google Scholar 

  26. Danielsson LG, Dymling J-F, Heripret G. Coxarthrosis in man studied with external counting of Sr85 and Ca47*. Clin Orthop Relat Res. 1963;31.

    CAS  PubMed  Google Scholar 

  27. Dieppe P, Cushnaghan J, Young P, Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis. 1993;52:557–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hutton CW, Higgs ER, Jackson PC. 99m Tc HMDP bone scanning in generalised nodal osteoarthritis. II. The four hour bone scan image predicts radiographic change. Ann Rheum Dis. 1986;45:622–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McCarthy C, Cushnaghan J, Dieppe P. The predictive role of scintigraphy in radiographic osteoarthritis of the hand. Osteoarthr Cartil. 1994;2:25–8.

    CAS  PubMed  Google Scholar 

  30. Reichenbach S, Guermazi A, Niu J, Neogi T, Hunter DJ, Roemer FW, et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthr Cartil. 2008;16:1005–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Neogi T, Felson D, Niu J, Lynch J, Nevitt M, Guermazi A, et al. Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the multicenter osteoarthritis study. Arthritis Care Res. 2009;61:1539–44.

    CAS  Google Scholar 

  32. Bolbos RI, Zuo J, Banerjee S, Link TM, Benjamin Ma C, Li X, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthr Cartil. 2008;16:1150–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci. 2014;227–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-Β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Watabe T, Miyazono K. Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res. 2009;19:103–15.

    CAS  PubMed  Google Scholar 

  36. Augello A, De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther. 2010;21:1226–38.

    CAS  PubMed  Google Scholar 

  37. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    CAS  PubMed  Google Scholar 

  38. Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-β and osteoarthritis. Osteoarthr Cartil. 2007;15:597–604.

    CAS  PubMed  Google Scholar 

  39. Blaney Davidson EN, Vitters EL, Van Der Kraan PM, Van Den Berg WB. Expression of transforming growth factor-β (TGFβ) and the TGFβ signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis. 2006;65:1414–21.

    CAS  PubMed  Google Scholar 

  40. Shen J, Li J, Wang B, Jin H, Wang M, Zhang Y, et al. Deletion of the transforming growth factor β receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum. 2013;65:3107–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol. 2001;153:35–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mohan G, Perilli E, Parkinson IH, Humphries JM, Fazzalari NL, Kuliwaba JS. Pre-emptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: effect on subchondral trabecular bone microarchitecture and cartilage degradation of the tibia, bone/cartilage turnover, and joint discomfort. Osteoarthr Cartil. 2013;21:1595–604.

    CAS  PubMed  Google Scholar 

  43. Siebelt M, Waarsing JH, Groen HC, Müller C, Koelewijn SJ, de Blois E, et al. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone. 2014;66:163–70.

    CAS  PubMed  Google Scholar 

  44. Zhang L, Hu H, Tian F, Song H, Zhang Y. Enhancement of subchondral bone quality by alendronate administration for the reduction of cartilage degeneration in the early phase of experimental osteoarthritis. Clin Exp Med. 2011;11:235–43.

    CAS  PubMed  Google Scholar 

  45. Shirai T, Kobayashi M, Nishitani K, Satake T, Kuroki H, Nakagawa Y, et al. Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. J Orthop Res. 2011;29:1572–7.

    CAS  PubMed  Google Scholar 

  46. Moreau M, Rialland P, Pelletier JP, Martel-Pelletier J, Lajeunesse D, Boileau C, et al. Tiludronate treatment improves structural changes and symptoms of osteoarthritis in the canine anterior cruciate ligament model. Arthritis Res Ther. 2011;13.

    CAS  Google Scholar 

  47. Strassle BW, Mark L, Leventhal L, Piesla MJ, Jian Li X, Kennedy JD, et al. Inhibition of osteoclasts prevents cartilage loss and pain in a rat model of degenerative joint disease. Osteoarthr Cartil. 2010;18:1319–28.

    CAS  PubMed  Google Scholar 

  48. Ding M, Danielsen CC, Hvid I. The effects of bone remodeling inhibition by alendronate on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Calcif Tissue Int. 2008;82:77–86.

    CAS  PubMed  Google Scholar 

  49. Bagi CM, Berryman E, Zakur DE, Wilkie D, Andresen CJ. Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA. Arthritis Res Ther. 2015;17.

  50. Myers SL, Brandt KD, Burr DB, O’Connor BL, Albrecht M. Effects of a bisphosphonate on bone histomorphometry and dynamics in the canine cruciate deficiency model of osteoarthritis. J Rheumatol. 1999;26:2645–53.

    CAS  PubMed  Google Scholar 

  51. Bingham CO, Buckland-Wright JC, Garnero P, Cohen SB, Dougados M, Adami S, et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis st. Arthritis Rheum. 2006;54:3494–507.

    CAS  PubMed  Google Scholar 

  52. Jokar M, Mirfeizi Z, Keyvanpajoh K. The effect of alendronate on symptoms of knee osteoarthritis: a randomized controlled trial. Iran J Med Sci. 2010;35:9–15.

    Google Scholar 

  53. Laslett LL, Doré DA, Quinn SJ, Boon P, Ryan E, Winzenberg TM, et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann Rheum Dis. 2012;71:1322–8.

    CAS  PubMed  Google Scholar 

  54. Rossini M, Adami S, Fracassi E, Viapiana O, Orsolini G, Povino MR, et al. Effects of intra-articular clodronate in the treatment of knee osteoarthritis: results of a double-blind, randomized placebo-controlled trial. Rheumatol Int. 2015;35:255–63.

    CAS  PubMed  Google Scholar 

  55. Spector TD, Conaghan PG, Buckland-Wright JC, Garnero P, Cline GA, Beary JF, et al. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial [ISRCTN01928173]. Arthritis Res Ther. 2005;7:R625.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Varenna M, Zucchi F, Failoni S, Becciolini A, Berruto M. Intravenous neridronate in the treatment of acute painful knee osteoarthritis: a randomized controlled study. Rheumatol (United Kingdom). 2015;54:1826–32.

    CAS  Google Scholar 

  57. Batiste DL, Kirkley A, Laverty S, Thain LMF, Spouge AR, Holdsworth DW. Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarthr Cartil. 2004;12:986–96.

    PubMed  Google Scholar 

  58. Sniekers YH, Intema F, Lafeber FPJG, Van Osch GJVM, Van Leeuwen JPTM, Weinans H, et al. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BMC Musculoskelet Disord. 2008;9.

  59. Botter SM, van Osch GJ, Waarsing JH, Day JS, Verhaar JA, Pols HA, et al. Quantification of subchondral bone changes in a murine osteoarthritis model using micro-CT. Biorheology. 2006;43:379–88.

    CAS  PubMed  Google Scholar 

  60. Botter SM, van Osch GJVM, Waarsing JH, van der Linden JC, Verhaar JAN, Pols HAP, et al. Cartilage damage pattern in relation to subchondral plate thickness in a collagenase-induced model of osteoarthritis. Osteoarthr Cartil. 2008;16:506–14.

    CAS  PubMed  Google Scholar 

  61. Botter SM, Glasson SS, Hopkins B, Clockaerts S, Weinans H, van Leeuwen JPTM, et al. ADAMTS5-/- mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and subchondral bone changes. Osteoarthr Cartil. 2009;17:636–45.

    CAS  PubMed  Google Scholar 

  62. Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KPH. Subchondral bone in osteoarthritis. Calcif Tissue Int. Springer. 1991;49(1):20–6.

    CAS  PubMed  Google Scholar 

  63. Hannan MT, Anderson JJ, Zhang Y, Levy D, Felson DT. Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham study. Arthritis Rheum. 1993;36:1671–80.

    CAS  PubMed  Google Scholar 

  64. Buckland-Wright C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthr Cartil. 2004;12:10–9.

    Google Scholar 

  65. Fazzalari NL, Parkinson IH. Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip. J Bone Miner Res. 1997;12:632–40.

    CAS  PubMed  Google Scholar 

  66. Arden NK, Griffiths GO, Hart DJ, Doyle DV, Spector TD. The association between osteoarthritis and osteoporotic fracture: the Chingford study. Rheumatology. Oxford University Press. 1996;35:1299–304.

    CAS  Google Scholar 

  67. Jia H, Ma X, Wei Y, Tong W, Tower RJ, Chandra A, et al. Loading-induced reduction in sclerostin as a mechanism of subchondral bone plate sclerosis in mouse knee joints during late-stage osteoarthritis. Arthritis Rheumatol. 2018;70:230–41.

    CAS  PubMed  Google Scholar 

  68. Burr DB, Utreja A. Editorial: Wnt signaling related to subchondral bone density and cartilage degradation in osteoarthritis. Arthritis Rheumatol. 2018;70:157–61.

    PubMed  Google Scholar 

  69. Wu L, Guo H, Sun K, Zhao X, Ma T, Jin Q. Sclerostin expression in the subchondral bone of patients with knee osteoarthritis. Int J Mol Med. 2016;38:1395–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Schaffler MB. Role of bone turnover in microdamage. Osteoporos Int. 2003;14:73–80.

    Google Scholar 

  71. Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17:521–5.

    CAS  PubMed  Google Scholar 

  72. Alliston T, Hernandez CJ, Findlay DM, Felson DT, Kennedy OD. Bone marrow lesions in osteoarthritis: what lies beneath. J Orthop Res. 2018;36:1818–25.

    PubMed  Google Scholar 

  73. Lambers FM, Bouman AR, Rimnac CM, Hernandez CJ. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance. PLoS One. 2013;8.

    PubMed  PubMed Central  Google Scholar 

  74. Hernandez CJ, Lambers FM, Widjaja J, Chapa C, Rimnac CM. Quantitative relationships between microdamage and cancellous bone strength and stiffness. Bone. 2014;66:205–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Follet H, Viguet-Carrin S, Burt-Pichat B, Dépalle B, Bala Y, Gineyts E, et al. Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone. J Orthop Res. 2011;29:481–8.

    PubMed  Google Scholar 

  76. Vashishth D, Koontz J, Qiu SJ, Lundin-Cannon D, Yeni YN, Schaffler MB, et al. In vivo diffuse damage in human vertebral trabecular bone. Bone. 2000;26:147–52.

    CAS  PubMed  Google Scholar 

  77. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12:6–15.

    CAS  PubMed  Google Scholar 

  78. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15:60–7.

    CAS  PubMed  Google Scholar 

  79. Seref-Ferlengez Z, Kennedy OD, Schaffler MB. Bone microdamage, remodeling and bone fragility: how much damage is too much damage? Bonekey Rep. 2015;4.

  80. Torres AM, Matheny JB, Keaveny TM, Taylor D, Rimnac CM, Hernandez CJ. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc Natl Acad Sci. 2016;113:2892–7.

    CAS  PubMed  Google Scholar 

  81. Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB. Intracortical remodeling in adult rat long bones after fatigue loading. Bone. 1998;23:275–81.

    CAS  PubMed  Google Scholar 

  82. Mori S, Harruff R, Burr DB. Microcracks in articular calcified cartilage of human femoral heads. Arch Pathol Lab Med. 1993;117:196–8.

    CAS  PubMed  Google Scholar 

  83. Sokoloff L. Microcracks in the calcified layer of articular cartilage. Arch Pathol Lab Med. 1993;117:191–5.

    CAS  PubMed  Google Scholar 

  84. Radin EL, Parker HG, Pugh JW, Steinberg RS, Paul IL, Rose RM. Response of joints to impact loading - III. Relationship between trabecular microfractures and cartilage degeneration. J Biomech 1973;6.

  85. Muratovic D, Findlay DM, Cicuttini FM, Wluka AE, Lee YR, Kuliwaba JS. Bone matrix microdamage and vascular changes characterize bone marrow lesions in the subchondral bone of knee osteoarthritis. Bone. 2018;108:193–201.

    CAS  PubMed  Google Scholar 

  86. Ramme AJ, Lendhey M, Raya JG, Kirsch T, Kennedy OD. A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis. Osteoarthr Cartil. 2016;24:1776–85.

    CAS  PubMed  Google Scholar 

  87. Selvarajah L, Curtis AM, Kennedy OD. Bone microdamage in acute knee injury. Curr Rheumatol Rep. 2018;20:89.

    PubMed  Google Scholar 

  88. Coughlin TR, Kennedy OD. The role of subchondral bone damage in post-traumatic osteoarthritis. Ann N Y Acad Sci. 2016;1383:58–66.

    PubMed  Google Scholar 

  89. Bonadio MB, Ormond Filho AG, Helito CP, Stump XM, Demange MK. Bone marrow lesion: image, clinical presentation, and treatment. Magn Reson Insights. 2017;10.

    Google Scholar 

  90. Taljanovic MS, Graham AR, Benjamin JB, Gmitro AF, Krupinski EA, Schwartz SA, et al. Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skelet Radiol. 2008;37:423–31.

    Google Scholar 

  91. Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology. 2013;215:835–40.

    Google Scholar 

  92. Leydet-Quilici H, Le Corroller T, Bouvier C, Giorgi R, Argenson JN, Champsaur P, et al. Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations. Osteoarthr Cartil. 2010;18:1429–35.

    CAS  PubMed  Google Scholar 

  93. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP, et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 2006;54:1529–35.

    PubMed  Google Scholar 

  94. Frobell RB, Roos HP, Roos EM, Hellio Le Graverand MP, Buck R, Tamez-Pena J, et al. The acutely ACL injured knee assessed by MRI: are large volume traumatic bone marrow lesions a sign of severe compression injury? Osteoarthr Cartil. 2008;16:829–36.

    CAS  PubMed  Google Scholar 

  95. Gong J, Pedoia V, Facchetti L, Link TM, Ma CB, Li X. Bone marrow edema-like lesions (BMELs) are associated with higher T1ρ and T2 values of cartilage in anterior cruciate ligament (ACL)-reconstructed knees: a longitudinal study. Quant Imaging Med Surg. 2016;6:661–70.

    PubMed  PubMed Central  Google Scholar 

  96. Filardo G, Andriolo L, di Laura FG, Napoli F, Zaffagnini S, Candrian C. Bone bruise in anterior cruciate ligament rupture entails a more severe joint damage affecting joint degenerative progression. Knee Surge Sport Traumatol Arthrosc. 2019;27:44–59.

    Google Scholar 

  97. Boileau C, Martel-Pelletier J, Abram F, Raynauld JP, Troncy É, D’Anjou MA, et al. Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis. Ann Rheum Dis. 2008;67:926–32.

    CAS  PubMed  Google Scholar 

  98. Weber A, Chan PMB, Wen C. Do immune cells lead the way in subchondral bone disturbance in osteoarthritis? Prog Biophys Mol Biol. 2018.

  99. Manilay JO, Zouali M. Tight relationships between B lymphocytes and the skeletal system. Trends Mol Med. 2014;20:405–12.

    CAS  PubMed  Google Scholar 

  100. Huang R, Wang X, Zhou Y, Xiao Y. RANKL-induced M1 macrophages are involved in bone formation. Bone Res. 2017;5.

  101. Roemer FW, Guermazi A, Javaid MK, Lynch JA, Niu J, Zhang Y, et al. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis. 2009;68:1461–5.

    CAS  PubMed  Google Scholar 

  102. Felson DT, Chaisson CE, Hill CL, Totterman SMS, Gale ME, Skinner KM, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541–9.

    CAS  PubMed  Google Scholar 

  103. Sower MF, Hayes C, Jamadar D, Capul D, Lachance L, Jannausch M, et al. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthr Cartil. 2003;11:387–93.

    Google Scholar 

  104. Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi A, et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63(3):691–9.

    PubMed  Google Scholar 

  105. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226:373–81.

    Google Scholar 

  106. Wluka AE, Hanna F, Davies-Tuck M, Wang Y, Bell RJ, Davis SR, et al. Bone marrow lesions predict increase in knee cartilage defects and loss of cartilage volume in middle-aged women without knee pain over 2 years. Ann Rheum Dis. 2009;68:850–5.

    CAS  PubMed  Google Scholar 

  107. Felson DT, Niu J, Guermazi A, Roemer F, Aliabadi P, Clancy M, et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum. 2007;56:2986–92.

    PubMed  Google Scholar 

  108. Muratovic D, Cicuttini F, Wluka A, Findlay D, Wang Y, Otto S, et al. Bone marrow lesions detected by specific combination of MRI sequences are associated with severity of osteochondral degeneration. Arthritis Res Ther. 2016;18.

  109. Davies-Tuck ML, Wluka AE, Wang Y, English DR, Giles GG, Cicuttini F. The natural history of bone marrow lesions in community-based adults with no clinical knee osteoarthritis. Ann Rheum Dis. 2009;68(6):904–8.

    CAS  PubMed  Google Scholar 

  110. Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthr Cartil. 2006;14:1081–5.

    CAS  PubMed  Google Scholar 

  111. Crema MD, Roemer FW, Zhu Y, Marra MD, Niu J, Zhang Y, et al. Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema–like lesions in patients with or at risk for knee osteoarthritis: detection with MR imaging—the MOST study. Radiology. 2010;256:855–62.

    PubMed  PubMed Central  Google Scholar 

  112. Libicher M, Ivancic M, Hoffmann V, Wenz W. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging. Eur Radiol. 2005;15:390–4.

    PubMed  Google Scholar 

  113. Zubler V, Mengiardi B, Pfirrmann CWA, Duc SR, Schmid MR, Hodler J, et al. Bone marrow changes on STIR MR images of asymptomatic feet and ankles. Eur Radiol. 2007;17:3066–72.

    PubMed  Google Scholar 

  114. Baranyay FJ, Wang Y, Wluka AE, English DR, Giles GG, Sullivan RO, et al. Association of bone marrow lesions with knee structures and risk factors for bone marrow lesions in the knees of clinically healthy, Community-Based Adults. Semin Arthritis Rheum. 2007;37:112–8.

    PubMed  Google Scholar 

  115. Guymer E, Baranyay F, Wluka AE, Hanna F, Bell RJ, Davis SR, et al. A study of the prevalence and associations of subchondral bone marrow lesions in the knees of healthy, middle-aged women. Osteoarthr Cartil. 2007;15(12):1437–42.

    CAS  PubMed  Google Scholar 

  116. Roemer FW, Neogi T, Nevitt MC, Felson DT, Zhu Y, Zhang Y, et al. Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthr Cartil. 2010;18:47–53.

    CAS  PubMed  Google Scholar 

  117. Berry PA, Davies-Tuck ML, Wluka AE, Hanna FS, Bell RJ, Davis SR, et al. The natural history of bone marrow lesions in community-based middle-aged women without clinical knee osteoarthritis. Semin Arthritis Rheum. 2009;39:213–7.

    PubMed  Google Scholar 

  118. van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthr Cartil. 2007;15:237–44.

    PubMed  Google Scholar 

  119. Zoricic S, Maric I, Bobinac D, Vukicevic S. Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans. J Anat. 2003;202(3):269–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. McCauley TR, Kornaat PR, Jee WH. Central osteophytes in the knee: prevalence and association with cartilage defects on MP imaging. Am J Roentgenol. 2001;176:359–64.

    CAS  Google Scholar 

  121. Arden N, Nevitt MC. Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol. 2006.

  122. Gelse K, Söder S, Eger W, Diemtar T, Aigner T. Osteophyte development - molecular characterization of differentiation stages. Osteoarthr Cartil. 2003;11:141–8.

    CAS  PubMed  Google Scholar 

  123. Williams JM, Brandt KD. Exercise increases osteophyte formation and diminishes fibrillation following chemically induced articular cartilage injury. J Anat. 1984;139:599.

    PubMed  PubMed Central  Google Scholar 

  124. Williams JM, Brandt KD. Temporary immobilisation facilitates repair of chemically induced articular cartilage injury. J Anat. 1984;138:435.

    PubMed  PubMed Central  Google Scholar 

  125. Williams JM, Brandt KD. Immobilization ameliorates chemically-induced articular cartilage damage. Arthritis Rheum. 1984;27(2):208–16.

    CAS  PubMed  Google Scholar 

  126. Palmoski MJ, Brandt KD. Immobilization of the knee prevents osteoarthritis after anterior cruciate ligament transection. Arthritis Rheum. 1982;25:1201–8.

    CAS  PubMed  Google Scholar 

  127. Hsia AW, Emami AJ, Tarke FD, Cunningham HC, Tjandra PM, Wong A, et al. Osteophytes and fracture calluses share developmental milestones and are diminished by unloading. J Orthop Res. 2018;36:699–710.

    PubMed  Google Scholar 

  128. Hsia AW, Anderson MJ, Heffner MA, Lagmay EP, Zavodovskaya R, Christiansen BA. Osteophyte formation after ACL rupture in mice is associated with joint restabilization and loss of range of motion. J Orthop Res. 2017;35:466–73.

    PubMed  Google Scholar 

  129. Pottenger LA, Phillips FM, Draganich LF. The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum. 1990;33(6):853–8.

    CAS  PubMed  Google Scholar 

  130. Murata K, Kokubun T, Morishita Y, Onitsuka K, Fujiwara S, Nakajima A, et al. Controlling abnormal joint movement inhibits response of osteophyte formation. Cartilage. 2018;9:391–401.

    PubMed  Google Scholar 

  131. Van Beuningen HM, Glansbeek HL, Van Der Kraan PM, Van Den Berg WB. Differential effects of local application of BMP-2 or TGF-β1 on both articular cartilage composition and osteophyte formation. Osteoarthr Cartil. 1998;6:306–17.

    PubMed  Google Scholar 

  132. Bakker AC, van de Loo FAJ, van Beuningen HM, Sime P, van Lent PLEM, van der Kraan PM, et al. Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthr Cartil. 2001;9:128–36.

    CAS  PubMed  Google Scholar 

  133. Scharstuhl A, Vitters EL, Van Der Kraan PM, Van Den Berg WB. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor β/Bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum. 2003;48:3442–51.

    CAS  PubMed  Google Scholar 

  134. Seeman E, Delmas PD. Bone quality — the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.

    CAS  PubMed  Google Scholar 

  135. Wang X, Bank RA, Tekoppele JM, Agrawal CM. The role of collagen in determining bone mechanical properties. J Orthop Res. Wiley Subscription Services, Inc., A Wiley Company. 2001;19:1021–6.

  136. Bailey AJ, Sims TJ, Knott L. Phenotypic expression of osteoblast collagen in osteoarthritic bone: production of type I homotrimer. Int J Biochem Cell Biol. 2002;34:176–82.

    CAS  PubMed  Google Scholar 

  137. Chang SW, Shefelbine SJ, Buehler MJ. Structural and mechanical differences between collagen homo-and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys J. 2012;102:640–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, et al. How tough is brittle Bone? Investigating osteogenesis imperfecta in mouse Bone. J Bone Miner Res. 2014;29:1392–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Couchourel D, Aubry I, Delalandre A, Lavigne M, Martel-Pelletier J, Pelletier JP, et al. Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum. 2009;60:1438–50.

    PubMed  PubMed Central  Google Scholar 

  140. Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling. Arthritis Res Ther. 2007;9.

    Google Scholar 

  141. Massicotte F, Lajeunesse D, Benderdour M, Pelletier JP, Hilal G, Duval N, et al. Can altered production of interleukin-1β, interleukin-6, transforming growth factor-β and prostaglandin E2 by isolated human subchondral osteoblasts identity two subgroups of osteoarthritic patients. Osteoarthr Cartil. 2002;10(6):491–500.

    CAS  PubMed  Google Scholar 

  142. Chan TF, Couchourel D, Abed A, Delalandre A, Duval N, Lajeunesse D. Elevated Dickkopf-2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts. J Bone Miner Res. 2011;26:1399–410.

    CAS  PubMed  Google Scholar 

  143. Li B, Aspden RM. Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis. 1997;56:247 LP–254.

    Google Scholar 

  144. Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res Wiley Online Library. 1997;12:641–51.

    CAS  PubMed  Google Scholar 

  145. Ferguson VL, Bushby AJ, Boyde A. Nanonmechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat. 2003;203:191–202.

    PubMed  PubMed Central  Google Scholar 

  146. Li B, Aspden RM. Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int. 1997;7:450–6.

    CAS  PubMed  Google Scholar 

  147. Cox LGE, van Donkelaar CC, van Rietbergen B, Emans PJ, Ito K. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis. Bone. 2012;50:1152–61.

    CAS  PubMed  Google Scholar 

  148. Zuo Q, Lu S, Du Z, Friis T, Yao J, Crawford R, et al. Characterization of nano-structural and nano-mechanical properties of osteoarthritic subchondral bone. BMC Musculoskelet Disord. 2016;17.

  149. Hardcastle SA, Dieppe P, Gregson CL, Davey Smith G, Tobias JH. Osteoarthritis and bone mineral density: are strong bones bad for joints? Bonekey Rep. 2015;4.

  150. Stewart A, Black A, Robins SP, Reid DM. Bone density and bone turnover in patients with osteoarthritis and osteoporosis. J Rheumatol. 1999;26:622–6.

    CAS  PubMed  Google Scholar 

  151. Dequeker J, Mokassa L, Aerssens J, Boonen S. Bone density and local growth factors in generalized osteoarthritis. Microsc Res Tech. 1997;37(4):358–71.

    CAS  PubMed  Google Scholar 

  152. Burger H, Van Daele PLA, Odding E, Valkenburg HA, Hofman A, Grobbee DE, et al. Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. Arthritis Rheum. 1996;39(1):81–6.

    CAS  PubMed  Google Scholar 

  153. Goker B, Sumner DR, Hurwitz DE, Block JA. Bone mineral density varies as a function of the rate of joint space narrowing in the hip. J Rheumatol. 2000;27:735–8.

    CAS  PubMed  Google Scholar 

  154. Stewart A, Black AJ. Bone mineral density in osteoarthritis. Curr Opin Rheumatol. 2000;12(5):464–7.

    CAS  PubMed  Google Scholar 

  155. Day JS, Van Der Linden JC, Bank RA, Ding M, Hvid I, Sumner DR, et al. Adaptation of subchondral bone in osteoarthritis. Biorheology. 2004;41:359–68.

    CAS  PubMed  Google Scholar 

  156. Day JS, Ding M, Van Der Linden JC, Hvid I, Sumner DR, Weinans H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res. 2001;19:914–8.

    CAS  PubMed  Google Scholar 

  157. Hargrave-Thomas E, van Sloun F, Dickinson M, Broom N, Thambyah A. Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states. Osteoarthr Cartil. 2015;23:1755–62.

    CAS  PubMed  Google Scholar 

  158. Pragnère S, Boulocher C, Pollet O, Bosser C, Levillain A, Cruel M, et al. Mechanical alterations of the bone-cartilage unit in a rabbit model of early osteoarthrosis. J Mech Behav Biomed Mater. 2018;83:1–8.

    PubMed  Google Scholar 

  159. Currey JD. Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond Ser B Biol Sci. 1984;304:509–18.

    CAS  Google Scholar 

  160. Currey JD. How well are bones designed to resist fracture? J Bone Miner Res. 2003;18:591–8.

    PubMed  Google Scholar 

  161. Radin EL, Paul IL, Tolkoff MJ. Subchondral bone changes in patients with early degenerative joint disease. Arthritis Rheum. 1970;13:400–5.

    CAS  PubMed  Google Scholar 

  162. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;34–40.

  163. Deligianni DD, Missirlis YF, Tanner KE, Bonfield W. Mechanical behaviour of trabecular bone of the human femoral head in females. J Mater Sci Mater Med Springer. 1991;2:168–75.

    Google Scholar 

  164. Brown SJ, Pollintine P, Powell DE, Davie MWJ, Sharp CA. Regional differences in mechanical and material properties of femoral head cancellous bone in health and osteoarthritis. Calcif Tissue Int. 2002;71:227–34.

    CAS  PubMed  Google Scholar 

  165. Ding M, Danielsen CC, Hvid I. Bone density does not reflect mechanical properties in early-stage arthrosis. Acta Orthop Scand. 2001;72:181–5.

    CAS  PubMed  Google Scholar 

  166. Findlay DM, Kuliwaba JS. Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res. 2016;4.

  167. Yuan XL, Meng HY, Wang YC, Peng J, Guo QY, Wang AY, et al. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthr Cartil. 2014;22:1077–89.

    CAS  PubMed  Google Scholar 

  168. Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage bone crosstalk. Nat Rev Rheumatol. 2016;12:632–44.

    PubMed  Google Scholar 

  169. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res. 2009;27:1347–52.

    PubMed  PubMed Central  Google Scholar 

  170. Arkill KP, Winlove CP. Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr Cartil. 2008;16:708–14.

    CAS  PubMed  Google Scholar 

  171. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F. Subchondral bone and cartilage disease: a rediscovered functional unit. Investig Radiol. 2000;35:581–8.

    CAS  Google Scholar 

  172. Hwang J, Bae WC, Shieu W, Lewis CW, Bugbee WD, Sah RL. Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum. 2008;58:3831–42.

    PubMed  PubMed Central  Google Scholar 

  173. Iijima H, Aoyama T, Tajino J, Ito A, Nagai M, Yamaguchi S, et al. Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis. Osteoarthr Cartil. 2016;24:354–63.

    CAS  PubMed  Google Scholar 

  174. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 2012;8:390–8.

    CAS  PubMed  Google Scholar 

  175. Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JYL, Henrotin YE. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthr Cartil. 2005;13(11):988–97.

    CAS  PubMed  Google Scholar 

  176. Priam S, Bougault C, Houard X, Gosset M, Salvat C, Berenbaum F, et al. Identification of soluble 14-3-3ε as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis. Arthritis Rheum. 2013;65:1831–42.

    CAS  PubMed  Google Scholar 

  177. van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis. Modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartil. 2009;17:1539–45.

    PubMed  Google Scholar 

  178. van der Kraan PM, Blaney Davidson EN, van den Berg WB. A role for age-related changes in TGFβ signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res Ther. 2010;12.

  179. Van Der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat. Rev. Rheumatol. 2017;155–63.

  180. Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Inhibition of endogenous TGF- during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol. 2002;169:507–14.

    CAS  PubMed  Google Scholar 

  181. Oh H, Chun CH, Chun JS. Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 2012;64:2568–78.

    CAS  PubMed  Google Scholar 

  182. Chan BY, Fuller ES, Russell AK, Smith SM, Smith MM, Jackson MT, et al. Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthr Cartil. 2011;19:874–85.

    CAS  PubMed  Google Scholar 

Download references

Funding

Science Foundation Ireland (17/CDA/4699) H2020-MCSA-IF-799 283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oran D. Kennedy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathavan, N., Kennedy, O.D. Skeletal Changes Associated with Osteoarthritis. Clinic Rev Bone Miner Metab 17, 123–137 (2019). https://doi.org/10.1007/s12018-019-09264-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-019-09264-0

Keywords

Navigation