Skip to main content
Log in

Propofol Protects Against Angiotensin II-Induced Mouse Hippocampal HT22 Cells Apoptosis Via Inhibition of p66Shc Mitochondrial Translocation

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Hippocampal neuronal oxidative stress and apoptosis have been reported to be involved in cognitive impairment, and angiotensin II could induce hippocampal oxidative stress and apoptosis. Propofol is a widely used intravenous anesthetic agent in clinical practice, and it demonstrates significant neuroprotective activities. In this study, we investigated the mechanism how propofol protected mouse hippocampal HT22 cells against angiotensin II-induced oxidative stress and apoptosis. Cell viability was evaluated with CCK8 kit. Protein expressions of active caspase 3, cytochrome c, p66Shc, p-p66shc–Ser36, protein kinase C βII (PKCβII), Pin-1 and phosphatase A2 (PP2A) were measured by Western blot. Superoxide anion (O .−2 ) accumulation was measured with the reduction of ferricytochrome c. Compared with the control group, angiotensin II up-regulated expression of PKCβII, Pin-1 and PP2A, induced p66Shc–Ser36 phosphorylation, and facilitated p66Shc mitochondrial translocation, resulting in O .−2 accumulation, mitochondrial cytochrome c release, caspase 3 activation, and the inhibition of cell viability. Importantly, we found propofol inhibited angiotensin II-induced PKCβII and PP2A expression and improved p66Shc mitochondrial translocation, O .−2 accumulation, mitochondrial cytochrome c release, caspase 3 activation, inhibition of cell viability. On the other hand, propofol had no effects on angiotensin II-induced Pin-1 expression and p66Shc–Ser36 phosphorylation. Moreover, the protective effects of propofol on angiotensin II-induced HT22 apoptosis were similar with calyculin A, an inhibitor of PP2A and CGP53353, an inhibitor of PKCβII. However, the protective effect of propofol could be reversed by FTY720, an activator of PP2A, rather than PMA, an activator of PKCβII. Our data indicated that propofol down-regulated PP2A expression, inhibiting dephosphorylation of p66Shc–Ser36 and p66Shc mitochondrial translocation, decreasing O .−2 accumulation, reducing mitochondrial cytochrome c release, inhibiting caspase 3 activation. By these mechanisms, it protects mouse hippocampal HT22 cells against angiotensin II-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berry, A., Greco, A., Giorgio, M., Pelicci, P. G., de Kloet, R., Alleva, E., et al. (2008). Deletion of the lifespan determinant p66(Shc) improves performance in a spatial memory task, decreases levels of oxidative stress markers in the hippocampus and increases levels of the neurotrophin BDNF in adult mice. Experimental Gerontology, 43(3), 200–208.

    Article  CAS  PubMed  Google Scholar 

  • Bild, W., Hritcu, L., Stefanescu, C., & Ciobica, A. (2013). Inhibition of central angiotensin II enhances memory function and reduces oxidative stress status in rat hippocampus. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 43, 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Bittner, E. A., Yue, Y., & Xie, Z. (2011). Brief review: anesthetic neurotoxicity in the elderly, cognitive dysfunction and Alzheimer’s disease. Canadian Journal of Anaesthesia, 58(2), 216–223.

    Article  PubMed  Google Scholar 

  • Bonati, A., Carlo-Stella, C., Lunghi, P., Albertini, R., Pinelli, S., Migliaccio, E., et al. (2000). Selective expression and constitutive phosphorylation of SHC proteins in the CD34+ fraction of chronic myelogenous leukemias. Cancer Research, 60(3), 728–732.

    CAS  PubMed  Google Scholar 

  • Bonini, J. S., Bevilaqua, L. R., Zinn, C. G., Kerr, D. S., Medina, J. H., Izquierdo, I., et al. (2006). Angiotensin II disrupts inhibitory avoidance memory retrieval. Hormones and Behavior, 50(2), 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Braszko, J., Kulakowska, A., & Winnicka, M. (2003). Effects of angiotensin II and its receptor antagonists on motor activity and anxiety in rats. Journal of Physiology and Pharmacology, 54(2), 271–281.

    CAS  PubMed  Google Scholar 

  • Ciobica, A., Bild, W., Hritcu, L., & Haulica, I. (2009). Brain rennin-angiotensin system in cognitive function: Pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurologica Belgica, 109(3), 171–180.

    PubMed  Google Scholar 

  • Diogo, C. V., Suski, J. M., Lebiedzinska, M., Karkucinska-Wieckowska, A., Wojtala, A., Pronicki, M., et al. (2013). Cardiac mitochondrial dysfunction during hyperglycemia-the role of oxidative stress and p66Shc signaling. International Journal of Biochemistry and Cell Biology, 45(1), 114–122.

    Article  CAS  PubMed  Google Scholar 

  • Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Floyd, R. A., & Hensley, K. (2002). Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiology of Aging, 23(5), 795–807.

    Article  CAS  PubMed  Google Scholar 

  • Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., et al. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell, 122(2), 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Handy, D. E., & Loscalzo, J. (2012). Redox regulation of mitochondrial function. Antioxidants and Redox Signaling, 16(11), 1323–1367.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hovens, I. B., Schoemaker, R. G., van der Zee, E. A., Heineman, E., Izaks, G. J., & van Leeuwen, B. L. (2012). Thinking through postoperative cognitive dysfunction: How to bridge the gap between clinical and pre-clinical perspectives. Brain, Behavior, and Immunity, 26(7), 1169–1179.

    Article  PubMed  Google Scholar 

  • Hsu, H. H., Hoffmann, S., Di Marco, G. S., Endlich, N., Peter-Katalinić, J., Weide, T., et al. (2011). Downregulation of the antioxidant protein peroxiredoxin 2 contributes to angiotensin II-mediated podocyte apoptosis. Kidney International, 80(9), 959–969.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, Y. H., Mungunsukh, O., Tutino, R. L., Marquez, A. P., & Day, R. M. (2010). Angiotensin II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial cells. Journal of Cell Science, 123(Pt 10), 1634–1643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin, D., Cao, L., Wang, Z., Li, J., Washington, J. M., & Zuo, Z. (2012). Lidocaine attenuates cognitive impairment after isoflurane anesthesia in old rats. Behavioural Brain Research, 228(2), 319–327.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinou, J. C., & Youle, R. J. (2011). Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Developmental Cell, 21(1), 92–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathy-Hartert, M., Deby-Dupont, G., Hans, P., Deby, C., & Lamy, M. (1998). Protective activity of propofol, diprivan and intralipid against active oxygen species. Mediators of Inflammation, 7(5), 327–333.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., et al. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402(6759), 309–313.

    Article  CAS  PubMed  Google Scholar 

  • Paneni, F., Mocharla, P., Akhmedov, A., Costantino, S., Osto, E., Volpe, M., et al. (2012). Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circulation Research, 111(3), 278–289.

    Article  CAS  PubMed  Google Scholar 

  • Rask-Madsen, C., & King, G. L. (2005). Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(3), 487–496.

    Article  CAS  PubMed  Google Scholar 

  • Sanderson, D. J., Cunningham, C., Deacon, R. M., Bannerman, D. M., Perry, V. H., & Rawlins, J. N. (2009). A double dissociation between the effects of sub-pyrogenic systemic inflammation and hippocampal lesions on learning. Behavioural Brain Research, 201(1), 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., et al. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 21(24), 3872–3878.

    Article  CAS  PubMed  Google Scholar 

  • Whittington, R. A., Virág, L., Marcouiller, F., Papon, M. A., El Khoury, N. B., Julien, C., et al. (2011). Propofol directly increases tau phosphorylation. PLoS ONE, 6(1), e16648.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf, G. (2005). Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. Antioxidants and Redox Signaling, 7(9–10), 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  • Young, Y., Menon, D. K., Tisavipat, N., Matta, B. F., & Jones, J. G. (1997). Propofol neuroprotection in a rat model of ischaemia reperfusion injury. European Journal of Anaesthesiology, 14(3), 320–326.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, H., Yuan, Y., Liu, Y., Deng, W., Zong, J., Bian, Z. Y., et al. (2014). Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways. Experimental and Therapeutic Medicine, 7(5), 1116–1122.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu, M., Chen, J., Tan, Z., & Wang, J. (2012). Propofol protects against high glucose-induced endothelial dysfunction in human umbilical vein endothelial cells. Anesthesia and Analgesia, 114(2), 303–309.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minmin Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Chen, J., Wen, M. et al. Propofol Protects Against Angiotensin II-Induced Mouse Hippocampal HT22 Cells Apoptosis Via Inhibition of p66Shc Mitochondrial Translocation. Neuromol Med 16, 772–781 (2014). https://doi.org/10.1007/s12017-014-8326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8326-6

Keywords

Navigation