Skip to main content

Advertisement

Log in

The Role of STAT Signaling Pathways in the Pathogenesis of Systemic Lupus Erythematosus

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder with a broad spectrum of clinical presentations and association with multiple immunological abnormalities. Recent research of the Janus kinase (JAK)—signal transducer and activator of transcription (STAT) signaling pathway—revealed aberrant STAT signaling in inflammatory conditions and autoimmune diseases including SLE. STAT proteins are major components in interferon (IFN)-dependent gene expression and are responsible for signal transduction of over 50 cytokines, hormones, and growth factors regulating key cellular processes such as survival, proliferation, and differentiation. This review summarizes the present evidence from experimental animal models and patients with SLE for the involvement of STAT pathways in the pathogenesis of SLE underlining the role of different members of the STAT family. Genome-wide association studies provided evidence that variations in STAT4 gene are linked to the development of SLE in humans. First integration with genome-wide epigenomics data suggests that control of CD4+ T cell differentiation in which STATs play a major role may be an important component of the genetic contribution to disease susceptibility. Increased transcript and total protein STAT1 levels were described both in SLE T and B cells suggestive of the priming mechanisms that augment STAT1 signaling responses to IFN. STAT3 has a crucial role in Th17 differentiation, T follicular helper, and B cells, and STAT3 inhibition could represent a possible future therapeutic target in SLE. STAT5B appears to act as a critical modulator of human Treg development and function. While the imbalance between phosphorylated STAT5 and STAT3 in human SLE T cells was implicated in dysregulated IL-10 expression, Treg-specific deletion of STAT3 in mouse model even enhanced Th17-mediated inflammation. Finally, we present also a comprehensive analysis of studies investigating STAT signaling responses in conventional and regulatory subsets of SLE T and B cells and possible implications of STAT inhibition for clinical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Parkes M, Cortes A, van Heel DA, Brown MA (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 14:661–673

    Article  CAS  PubMed  Google Scholar 

  3. Ghodke-Puranik Y, Niewold TB (2015) Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun 64:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rullo OJ, Tsao BP (2013) Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis 72(Suppl 2):ii56–ii61

    Article  CAS  PubMed  Google Scholar 

  5. Tak YG, Farnham PJ (2015) Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 8:57

    Article  PubMed  PubMed Central  Google Scholar 

  6. Farh KK, Marson A, Zhu J et al (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–343

    Article  CAS  PubMed  Google Scholar 

  7. Maurano MT, Humbert R, Rynes E et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miguel-Escalada I, Pasquali L, Ferrer J (2015) Transcriptional enhancers: functional insights and role in human disease. Curr Opin Genet Dev 33:71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hnisz D, Abraham BJ, Lee TI et al (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947

    Article  CAS  PubMed  Google Scholar 

  10. Parker SC, Stitzel ML, Taylor DL et al (2013) Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A 110:17921–17926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vahedi G, Kanno Y, Furumoto Y et al (2015) Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520:558–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vahedi G, Takahashi H, Nakayamada S et al (2012) STATs shape the active enhancer landscape of T cell populations. Cell 151:981–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stark GR, Darnell JE Jr (2012) The JAK-STAT pathway at twenty. Immunity 36:503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  CAS  PubMed  Google Scholar 

  15. Li HS, Watowich SS (2014) Innate immune regulation by STAT-mediated transcriptional mechanisms. Immunol Rev 261:84–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Villarino AV, Kanno Y, Ferdinand JR, O'Shea JJ (2015) Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol 194:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bohmer FD, Friedrich K (2014) Protein tyrosine phosphatases as wardens of STAT signaling. Jakstat 3, e28087

    PubMed  PubMed Central  Google Scholar 

  18. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  CAS  PubMed  Google Scholar 

  19. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Article  CAS  PubMed  Google Scholar 

  20. Liongue C, Ward AC (2013) Evolution of the JAK-STAT pathway. Jakstat 2, e22756

    PubMed  PubMed Central  Google Scholar 

  21. Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637

    Article  CAS  PubMed  Google Scholar 

  22. Dorritie KA, Redner RL, Johnson DE (2014) STAT transcription factors in normal and cancer stem cells. Adv Biol Regul 56:30–44

    Article  CAS  PubMed  Google Scholar 

  23. Ehret GB, Reichenbach P, Schindler U et al (2001) DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J Biol Chem 276:6675–6688

    Article  CAS  PubMed  Google Scholar 

  24. Au-Yeung N, Mandhana R, Horvath CM (2013) Transcriptional regulation by STAT1 and STAT2 in the interferon JAK-STAT pathway. Jakstat 2, e23931

    PubMed  PubMed Central  Google Scholar 

  25. Abroun S, Saki N, Ahmadvand M, Asghari F, Salari F, Rahim F (2015) STATs: an old story, yet mesmerizing. Cell J 17:395–411

    PubMed  PubMed Central  Google Scholar 

  26. Vinkemeier U, Cohen SL, Moarefi I, Chait BT, Kuriyan J, Darnell JE Jr (1996) DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J 15:5616–5626

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reich NC (2013) STATs get their move on. Jakstat 2, e27080

    PubMed  PubMed Central  Google Scholar 

  28. Saleiro D, Platanias LC (2015) Intersection of mTOR and STAT signaling in immunity. Trends Immunol 36:21–29

    Article  CAS  PubMed  Google Scholar 

  29. Woo CH, Shishido T, McClain C et al (2008) Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res 102:538–545

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, Stark GR (2008) Roles of unphosphorylated STATs in signaling. Cell Res 18:443–451

    Article  CAS  PubMed  Google Scholar 

  31. O'Shea JJ, Notarangelo LD, Johnston JA, Candotti F (1997) Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency. J Clin Immunol 17:431–447

    Article  PubMed  Google Scholar 

  32. Zhong M, Henriksen MA, Takeuchi K et al (2005) Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc Natl Acad Sci U S A 102:3966–3971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wenta N, Strauss H, Meyer S, Vinkemeier U (2008) Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations. Proc Natl Acad Sci U S A 105:9238–9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Porritt RA, Hertzog PJ (2015) Dynamic control of type I IFN signalling by an integrated network of negative regulators. Trends Immunol 36:150–160

    Article  CAS  PubMed  Google Scholar 

  35. Lui PY, Jin DY, Stevenson NJ (2015) MicroRNA: master controllers of intracellular signaling pathways. Cell Mol Life Sci 72:3531–3542

    Article  CAS  PubMed  Google Scholar 

  36. Witte S, Muljo SA (2014) Integrating non-coding RNAs in JAK-STAT regulatory networks. Jakstat 3, e28055

    PubMed  PubMed Central  Google Scholar 

  37. Bocchini CE, Kasembeli MM, Roh SH, Tweardy DJ (2014) Contribution of chaperones to STAT pathway signaling. Jakstat 3, e970459

    PubMed  PubMed Central  Google Scholar 

  38. Schindler CW (2002) Series introduction. JAK-STAT signaling in human disease. J Clin Invest 109:1133–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ward AC, Touw I, Yoshimura A (2000) The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 95:19–29

    CAS  PubMed  Google Scholar 

  40. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328

    Article  PubMed  CAS  Google Scholar 

  41. Holcar M, Goropevsek A, Ihan A, Avcin T (2015) Age-related differences in percentages of regulatory and effector T lymphocytes and their subsets in healthy individuals and characteristic STAT1/STAT5 signalling response in helper T lymphocytes. J Immunol Res 2015:352934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Li G, Ju J, Weyand CM, Goronzy JJ (2015) Age-associated failure to adjust type I IFN receptor signaling thresholds after T cell activation. J Immunol 195:865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74:5–17

    Article  CAS  PubMed  Google Scholar 

  44. Zhu J, Paul WE (2010) Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 238:247–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonelli M, Shih HY, Hirahara K et al (2014) Helper T cell plasticity: impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr Top Microbiol Immunol 381:279–326

    PubMed  PubMed Central  Google Scholar 

  46. Tripathi SK, Lahesmaa R (2014) Transcriptional and epigenetic regulation of T-helper lineage specification. Immunol Rev 261:62–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547–549

    Article  CAS  PubMed  Google Scholar 

  48. Girdlestone J, Wing M (1996) Autocrine activation by interferon-gamma of STAT factors following T cell activation. Eur J Immunol 26:704–709

    Article  CAS  PubMed  Google Scholar 

  49. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  CAS  PubMed  Google Scholar 

  50. Sokol CL, Barton GM, Farr AG, Medzhitov R (2008) A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–596

    Article  CAS  PubMed  Google Scholar 

  52. Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133

    Article  CAS  PubMed  Google Scholar 

  54. Veldhoen M, Uyttenhove C, van Snick J et al (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346

    Article  CAS  PubMed  Google Scholar 

  55. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H (2009) Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol 10:864–871

    Article  CAS  PubMed  Google Scholar 

  56. Ma CS, Deenick EK (2014) Human T follicular helper (Tfh) cells and disease. Immunol Cell Biol 92:64–71

    Article  CAS  PubMed  Google Scholar 

  57. Ma CS, Avery DT, Chan A et al (2012) Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119:3997–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Toda A, Piccirillo CA (2006) Development and function of naturally occurring CD4+CD25+ regulatory T cells. J Leukoc Biol 80:458–470

    Article  CAS  PubMed  Google Scholar 

  59. Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178:2018–2027

    Article  CAS  PubMed  Google Scholar 

  61. Mahmud SA, Manlove LS, Farrar MA (2013) Interleukin-2 and STAT5 in regulatory T cell development and function. Jakstat 2, e23154

    PubMed  PubMed Central  Google Scholar 

  62. Duhen R, Glatigny S, Arbelaez CA, Blair TC, Oukka M, Bettelli E (2013) Cutting edge: the pathogenicity of IFN-gamma-producing Th17 cells is independent of T-bet. J Immunol 190:4478–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lochner M, Peduto L, Cherrier M et al (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med 205:1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou X, Bailey-Bucktrout SL, Jeker LT et al (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10:1000–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nguyen ML, Jones SA, Prier JE, Russ BE (2015) Transcriptional enhancers in the regulation of T cell differentiation. Front Immunol 6:462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Witte S, O'Shea JJ, Vahedi G (2015) Super-enhancers: asset management in immune cell genomes. Trends Immunol 36:519–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O'Shea JJ, Lahesmaa R, Vahedi G, Laurence A, Kanno Y (2011) Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol 11:239–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ciofani M, Madar A, Galan C et al (2012) A validated regulatory network for Th17 cell specification. Cell 151:289–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O'Shea JJ, Murray PJ (2008) Cytokine signaling modules in inflammatory responses. Immunity 28:477–487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Leonard WJ (2001) Cytokines and immunodeficiency diseases. Nat Rev Immunol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  71. Murray PJ (2007) The JAK-STAT signaling pathway: input and output integration. J Immunol 178:2623–2629

    Article  CAS  PubMed  Google Scholar 

  72. Avery DT, Deenick EK, Ma CS et al (2010) B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med 207:155–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deenick EK, Avery DT, Chan A et al (2013) Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. J Exp Med 210:2739–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miklossy G, Hilliard TS, Turkson J (2013) Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 12:611–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Adamkova L, Souckova K, Kovarik J (2007) Transcription protein STAT1: biology and relation to cancer. Folia Biol (Praha) 53:1–6

    CAS  Google Scholar 

  76. Szabo SJ, Sullivan BM, Peng SL, Glimcher LH (2003) Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 21:713–758

    Article  CAS  PubMed  Google Scholar 

  77. Liu L, Okada S, Kong XF et al (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van de Veerdonk FL, Plantinga TS, Hoischen A et al (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365:54–61

    Article  PubMed  Google Scholar 

  79. Uzel G, Sampaio EP, Lawrence MG et al (2013) Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol 131:1611–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hadj-Slimane R, Chelbi-Alix MK, Tovey MG, Bobe P (2004) An essential role for IFN-alpha in the overexpression of Fas ligand on MRL/lpr lymphocytes and on their spontaneous Fas-mediated cytotoxic potential. J Interferon Cytokine Res 24:717–728

    Article  CAS  PubMed  Google Scholar 

  81. Dong J, Wang QX, Zhou CY, Ma XF, Zhang YC (2007) Activation of the STAT1 signalling pathway in lupus nephritis in MRL/lpr mice. Lupus 16:101–109

    Article  CAS  PubMed  Google Scholar 

  82. Hale MB, Krutzik PO, Samra SS, Crane JM, Nolan GP (2009) Stage dependent aberrant regulation of cytokine-STAT signaling in murine systemic lupus erythematosus. PLoS One 4, e6756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Reeves WH, Lee PY, Weinstein JS, Satoh M, Lu L (2009) Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol 30:455–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thibault DL, Chu AD, Graham KL et al (2008) IRF9 and STAT1 are required for IgG autoantibody production and B cell expression of TLR7 in mice. J Clin Invest 118:1417–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yiu G, Rasmussen TK, Ajami B et al (2015) Development of Th17-associated interstitial kidney inflammation in lupus-prone mice lacking the gene encoding STAT-1. Arthritis Rheumatol

  86. Dominguez-Gutierrez PR, Ceribelli A, Satoh M, Sobel ES, Reeves WH, Chan EK (2014) Positive correlation of STAT1 and miR-146a with anemia in patients with systemic lupus erythematosus. J Clin Immunol 34:171–180

    Article  CAS  PubMed  Google Scholar 

  87. Dominguez-Gutierrez PR, Ceribelli A, Satoh M, Sobel ES, Reeves WH, Chan EK (2014) Elevated signal transducers and activators of transcription 1 correlates with increased C-C motif chemokine ligand 2 and C-X-C motif chemokine 10 levels in peripheral blood of patients with systemic lupus erythematosus. Arthritis Res Ther 16:R20

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lu MC, Lai NS, Chen HC et al (2013) Decreased microRNA(miR)-145 and increased miR-224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis. Clin Exp Immunol 171:91–99

    Article  CAS  PubMed  Google Scholar 

  89. Karonitsch T, Feierl E, Steiner CW et al (2009) Activation of the interferon-gamma signaling pathway in systemic lupus erythematosus peripheral blood mononuclear cells. Arthritis Rheum 60:1463–1471

    Article  PubMed  Google Scholar 

  90. Menon M, Blair PA, Isenberg DA, Mauri C (2016) A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity 44:683–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang X, Guo Y, Bao C, Shen N (2011) Multidimensional single cell based STAT phosphorylation profiling identifies a novel biosignature for evaluation of systemic lupus erythematosus activity. PLoS One 6, e21671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ivashkiv LB, Donlin LT (2014) Regulation of type I interferon responses. Nat Rev Immunol 14:36–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Baechler EC, Batliwalla FM, Karypis G et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100:2610–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liang Y, Xu WD, Yang XK et al (2014) Association of signaling transducers and activators of transcription 1 and systemic lupus erythematosus. Autoimmunity 47:141–145

    Article  CAS  PubMed  Google Scholar 

  95. Zhuang H, Szeto C, Han S, Yang L, Reeves WH (2015) Animal models of interferon signature positive lupus. Front Immunol 6:291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Landolt-Marticorena C, Bonventi G, Lubovich A et al (2009) Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis 68:1440–1446

    Article  CAS  PubMed  Google Scholar 

  97. Petri M, Singh S, Tesfasyone H et al (2009) Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus 18:980–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gamero AM, Young MR, Mentor-Marcel R et al (2010) STAT2 contributes to promotion of colorectal and skin carcinogenesis. Cancer Prev Res (Phila) 3:495–504

    Article  CAS  Google Scholar 

  99. Matsumoto M, Tanaka N, Harada H et al (1999) Activation of the transcription factor ISGF3 by interferon-gamma. Biol Chem 380:699–703

    Article  CAS  PubMed  Google Scholar 

  100. Abdul-Sater AA, Majoros A, Plumlee CR et al (2015) Different STAT transcription complexes drive early and delayed responses to type I IFNs. J Immunol 195:210–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hambleton S, Goodbourn S, Young DF et al (2013) STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci U S A 110:3053–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sriram U, Varghese L, Bennett HL et al (2012) Myeloid dendritic cells from B6.NZM Sle1/Sle2/Sle3 lupus-prone mice express an IFN signature that precedes disease onset. J Immunol 189:80–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ramirez-Velez G, Medina F, Ramirez-Montano L et al (2012) Constitutive phosphorylation of interferon receptor A-associated signaling proteins in systemic lupus erythematosus. PLoS One 7, e41414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baccala R, Gonzalez-Quintial R, Schreiber RD, Lawson BR, Kono DH, Theofilopoulos AN (2012) Anti-IFN-α/β receptor antibody treatment ameliorates disease in lupus-predisposed mice. J Immunol 189:5976–5984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Munroe ME, Lu R, Zhao YD et al (2016) Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann Rheum Dis. doi:10.1136/annrheumdis-2015-208140

    Google Scholar 

  106. Yang XO, Panopoulos AD, Nurieva R et al (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363

    Article  CAS  PubMed  Google Scholar 

  107. Durant L, Watford WT, Ramos HL et al (2010) Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32:605–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Harris TJ, Grosso JF, Yen HR et al (2007) Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 179:4313–4317

    Article  CAS  PubMed  Google Scholar 

  109. Liu X, Lee YS, Yu CR, Egwuagu CE (2008) Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J Immunol 180:6070–6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhu Y, Zou L, Liu YC (2016) T follicular helper cells, T follicular regulatory cells and autoimmunity. Int Immunol 28:173–179

    Article  CAS  PubMed  Google Scholar 

  111. Moens L, Tangye SG (2014) Cytokine-Mediated regulation of plasma cell generation: IL-21 takes center stage. Front Immunol 5:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Liu K, Liang C, Liang Z, Tus K, Wakeland EK (2005) Sle1ab mediates the aberrant activation of STAT3 and Ras-ERK signaling pathways in B lymphocytes. J Immunol 174:1630–1637

    Article  CAS  PubMed  Google Scholar 

  113. Nakou M, Bertsias G, Stagakis I et al (2010) Gene network analysis of bone marrow mononuclear cells reveals activation of multiple kinase pathways in human systemic lupus erythematosus. PLoS One 5, e13351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Harada T, Kyttaris V, Li Y, Juang YT, Wang Y, Tsokos GC (2007) Increased expression of STAT3 in SLE T cells contributes to enhanced chemokine-mediated cell migration. Autoimmunity 40:1–8

    Article  CAS  PubMed  Google Scholar 

  115. Edwards LJ, Mizui M, Kyttaris V (2015) Signal transducer and activator of transcription (STAT) 3 inhibition delays the onset of lupus nephritis in MRL/lpr mice. Clin Immunol 158:221–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Balomenos D, Rumold R, Theofilopoulos AN (1998) Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest 101:364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schwarting A, Wada T, Kinoshita K, Tesch G, Kelley VR (1998) IFN-gamma receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL-Fas(lpr) mice. J Immunol 161:494–503

    CAS  PubMed  Google Scholar 

  118. Haas C, Ryffel B, Le Hir M (1998) IFN-gamma receptor deletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB x NZW)F1 mice. J Immunol 160:3713–3718

    CAS  PubMed  Google Scholar 

  119. Ferber IA, Brocke S, Taylor-Edwards C et al (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 156:5–7

    CAS  PubMed  Google Scholar 

  120. Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA (1996) IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157:3223–3227

    CAS  PubMed  Google Scholar 

  121. Chitnis T, Najafian N, Benou C et al (2001) Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J Clin Invest 108:739–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Singh RR, Saxena V, Zang S et al (2003) Differential contribution of IL-4 and STAT6 vs STAT4 to the development of lupus nephritis. J Immunol 170:4818–4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jacob CO, Zang S, Li L et al (2003) Pivotal role of Stat4 and Stat6 in the pathogenesis of the lupus-like disease in the New Zealand mixed 2328 mice. J Immunol 171:1564–1571

    Article  CAS  PubMed  Google Scholar 

  124. Menke J, Bork T, Kutska B et al (2011) Targeting transcription factor Stat4 uncovers a role for interleukin-18 in the pathogenesis of severe lupus nephritis in mice. Kidney Int 79:452–463

    Article  CAS  PubMed  Google Scholar 

  125. Remmers EF, Plenge RM, Lee AT et al (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357:977–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Han JW, Zheng HF, Cui Y et al (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41:1234–1237

    Article  CAS  PubMed  Google Scholar 

  127. Graham RR, Cotsapas C, Davies L et al (2008) Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 40:1059–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Harley JB, Alarcon-Riquelme ME, Criswell LA et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gateva V, Sandling JK, Hom G et al (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41:1228–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bolin K, Sandling JK, Zickert A et al (2013) Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS One 8, e84450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Svenungsson E, Gustafsson J, Leonard D et al (2010) A STAT4 risk allele is associated with ischaemic cerebrovascular events and anti-phospholipid antibodies in systemic lupus erythematosus. Ann Rheum Dis 69:834–840

    Article  CAS  PubMed  Google Scholar 

  132. Korman BD, Kastner DL, Gregersen PK, Remmers EF (2008) STAT4: genetics, mechanisms, and implications for autoimmunity. Curr Allergy Asthma Rep 8:398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Namjou B, Sestak AL, Armstrong DL et al (2009) High-density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis Rheum 60:1085–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lamana A, Lopez-Santalla M, Castillo-Gonzalez R et al (2015) The minor allele of rs7574865 in the STAT4 gene is associated with increased mRNA and protein expression. PLoS One 10, e0142683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Cho SS, Bacon CM, Sudarshan C et al (1996) Activation of STAT4 by IL-12 and IFN-alpha: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J Immunol 157:4781–4789

    CAS  PubMed  Google Scholar 

  136. Kariuki SN, Kirou KA, MacDermott EJ, Barillas-Arias L, Crow MK, Niewold TB (2009) Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Immunol 182:34–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hellquist A, Jarvinen TM, Koskenmies S et al (2009) Evidence for genetic association and interaction between the TYK2 and IRF5 genes in systemic lupus erythematosus. J Rheumatol 36:1631–1638

    Article  CAS  PubMed  Google Scholar 

  138. Connolly JJ, Hakonarson H (2012) Role of cytokines in systemic lupus erythematosus: recent progress from GWAS and sequencing. J Biomed Biotechnol 2012:798924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Sigurdsson S, Nordmark G, Garnier S et al (2008) A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum Mol Genet 17:2868–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Abelson AK, Delgado-Vega AM, Kozyrev SV et al (2009) STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis 68:1746–1753

    Article  CAS  PubMed  Google Scholar 

  141. Lin JX, Leonard WJ (2000) The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene 19:2566–2576

    Article  CAS  PubMed  Google Scholar 

  142. Akira S (1999) Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17:138–146

    Article  CAS  PubMed  Google Scholar 

  143. Antov A, Yang L, Vig M, Baltimore D, Van Parijs L (2003) Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol 171:3435–3441

    Article  CAS  PubMed  Google Scholar 

  144. Cohen AC, Nadeau KC, Tu W et al (2006) Cutting edge: decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J Immunol 177:2770–2774

    Article  CAS  PubMed  Google Scholar 

  145. Piccirillo CA, d'Hennezel E, Sgouroudis E, Yurchenko E (2008) CD4+Foxp3+ regulatory T cells in the control of autoimmunity: in vivo veritas. Curr Opin Immunol 20:655–662

    Article  CAS  PubMed  Google Scholar 

  146. Jenks JA, Seki S, Kanai T et al (2013) Differentiating the roles of STAT5B and STAT5A in human CD4+ T cells. Clin Immunol 148:227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang XP, Ghoreschi K, Steward-Tharp SM et al (2011) Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 12:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hedrich CM, Rauen T, Apostolidis SA et al (2014) Stat3 promotes IL-10 expression in lupus T cells through trans-activation and chromatin remodeling. Proc Natl Acad Sci U S A 111:13457–13462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen Z, Lund R, Aittokallio T, Kosonen M, Nevalainen O, Lahesmaa R (2003) Identification of novel IL-4/Stat6-regulated genes in T lymphocytes. J Immunol 171:3627–3635

    Article  CAS  PubMed  Google Scholar 

  150. Tuomela S, Rautajoki KJ, Moulder R, Nyman TA, Lahesmaa R (2009) Identification of novel Stat6 regulated proteins in IL-4-treated mouse lymphocytes. Proteomics 9:1087–1098

    Article  CAS  PubMed  Google Scholar 

  151. Elo LL, Jarvenpaa H, Tuomela S et al (2010) Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. Immunity 32:852–862

    Article  CAS  PubMed  Google Scholar 

  152. Kaplan MH, Schindler U, Smiley ST, Grusby MJ (1996) Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4:313–319

    Article  CAS  PubMed  Google Scholar 

  153. Shimoda K, van Deursen J, Sangster MY et al (1996) Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380:630–633

    Article  CAS  PubMed  Google Scholar 

  154. Takeda K, Tanaka T, Shi W et al (1996) Essential role of Stat6 in IL-4 signalling. Nature 380:627–630

    Article  CAS  PubMed  Google Scholar 

  155. Dean GS, Tyrrell-Price J, Crawley E, Isenberg DA (2000) Cytokines and systemic lupus erythematosus. Ann Rheum Dis 59:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Theofilopoulos AN, Koundouris S, Kono DH, Lawson BR (2001) The role of IFN-gamma in systemic lupus erythematosus: a challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis Res 3:136–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Luzina IG, Knitzer RH, Atamas SP et al (1999) Vasculitis in the Palmerston North mouse model of lupus: phenotype and cytokine production profile of infiltrating cells. Arthritis Rheum 42:561–568

    Article  CAS  PubMed  Google Scholar 

  158. Nakajima A, Hirose S, Yagita H, Okumura K (1997) Roles of IL-4 and IL-12 in the development of lupus in NZB/W F1 mice. J Immunol 158:1466–1472

    CAS  PubMed  Google Scholar 

  159. Leng RX, Pan HF, Ye DQ, Xu Y (2012) Potential roles of IL-9 in the pathogenesis of systemic lupus erythematosus. Am J Clin Exp Immunol 1:28–32

    PubMed  PubMed Central  Google Scholar 

  160. Ouyang H, Shi Y, Liu Z et al (2013) Increased interleukin 9 and CD4+IL-9+ T cells in patients with systemic lupus erythematosus. Mol Med Rep 7:1031–1037

    CAS  PubMed  Google Scholar 

  161. Lau M, Tsantikos E, Maxwell MJ, Tarlinton DM, Anderson GP, Hibbs ML (2012) Loss of STAT6 promotes autoimmune disease and atopy on a susceptible genetic background. J Autoimmun 39:388–397

    Article  CAS  PubMed  Google Scholar 

  162. Yu HH, Liu PH, Lin YC et al (2010) Interleukin 4 and STAT6 gene polymorphisms are associated with systemic lupus erythematosus in Chinese patients. Lupus 19:1219–1228

    Article  CAS  PubMed  Google Scholar 

  163. Krutzik PO, Irish JM, Nolan GP, Perez OD (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110:206–221

    Article  CAS  PubMed  Google Scholar 

  164. Rasmussen TK, Andersen T, Bak RO et al (2015) Overexpression of microRNA-155 increases IL-21 mediated STAT3 signaling and IL-21 production in systemic lupus erythematosus. Arthritis Res Ther 17:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Caprioli F, Sarra M, Caruso R et al (2008) Autocrine regulation of IL-21 production in human T lymphocytes. J Immunol 180:1800–1807

    Article  CAS  PubMed  Google Scholar 

  166. Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483

    Article  CAS  PubMed  Google Scholar 

  167. Dolff S, Abdulahad WH, Westra J et al (2011) Increase in IL-21 producing T-cells in patients with systemic lupus erythematosus. Arthritis Res Ther 13:157

    Article  CAS  Google Scholar 

  168. Pratama A, Vinuesa CG (2014) Control of TFH cell numbers: why and how? Immunol Cell Biol 92:40–48

    Article  CAS  PubMed  Google Scholar 

  169. Vinuesa CG, Linterman MA, Goodnow CC, Randall KL (2010) T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol Rev 237:72–89

    Article  CAS  PubMed  Google Scholar 

  170. Ettinger R, Kuchen S, Lipsky PE (2008) The role of IL-21 in regulating B-cell function in health and disease. Immunol Rev 223:60–86

    Article  CAS  PubMed  Google Scholar 

  171. Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  172. Chaudhry A, Rudra D, Treuting P et al (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kluger MA, Melderis S, Nosko A et al (2015) Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int 89:158–166

    Article  CAS  Google Scholar 

  174. Yan D, Farache J, Mathis D, Benoist C (2015) Imbalanced signal transduction in regulatory T cells expressing the transcription factor FoxP3. Proc Natl Acad Sci U S A 112:14942–14947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Miyara M, Yoshioka Y, Kitoh A et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    Article  CAS  PubMed  Google Scholar 

  176. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  CAS  PubMed  Google Scholar 

  177. Kalland ME, Oberprieler NG, Vang T, Tasken K, Torgersen KM (2011) T cell-signaling network analysis reveals distinct differences between CD28 and CD2 costimulation responses in various subsets and in the MAPK pathway between resting and activated regulatory T cells. J Immunol 187:5233–5245

    Article  CAS  PubMed  Google Scholar 

  178. Moulton VR, Tsokos GC (2015) T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest 125:2220–2227

    Article  PubMed  PubMed Central  Google Scholar 

  179. Golding A, Hasni S, Illei G, Shevach EM (2013) The percentage of FoxP3+Helios+ Treg cells correlates positively with disease activity in systemic lupus erythematosus. Arthritis Rheum 65:2898–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Alexander T, Sattler A, Templin L et al (2013) Foxp3+ Helios+ regulatory T cells are expanded in active systemic lupus erythematosus. Ann Rheum Dis 72:1549–1558

    Article  CAS  PubMed  Google Scholar 

  181. Dupont G, Demaret J, Venet F et al (2014) Comparative dose-responses of recombinant human IL-2 and IL-7 on STAT5 phosphorylation in CD4+FOXP3- cells versus regulatory T cells: a whole blood perspective. Cytokine 69:146–149

    Article  CAS  PubMed  Google Scholar 

  182. Barron L, Dooms H, Hoyer KK et al (2010) Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol 185:6426–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Horwitz DA (2010) Identity of mysterious CD4+CD25-Foxp3+ cells in SLE. Arthritis Res Ther 12:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Zhang B, Zhang X, Tang FL, Zhu LP, Liu Y, Lipsky PE (2008) Clinical significance of increased CD4+CD25-Foxp3+ T cells in patients with new-onset systemic lupus erythematosus. Ann Rheum Dis 67:1037–1040

    Article  CAS  PubMed  Google Scholar 

  185. Bonelli M, Goschl L, Bluml S et al (2014) CD4(+)CD25(-)Foxp3(+) T cells: a marker for lupus nephritis? Arthritis Res Ther 16:104

    Article  CAS  Google Scholar 

  186. Flores-Borja F, Bosma A, Ng D et al (2013) CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5:173ra123

    Article  CAS  Google Scholar 

  187. Blair PA, Norena LY, Flores-Borja F et al (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 32:129–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the University Medical Center Ljubljana Research Grant 20140208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadej Avčin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goropevšek, A., Holcar, M. & Avčin, T. The Role of STAT Signaling Pathways in the Pathogenesis of Systemic Lupus Erythematosus. Clinic Rev Allerg Immunol 52, 164–181 (2017). https://doi.org/10.1007/s12016-016-8550-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-016-8550-y

Keywords

Navigation