Skip to main content

Advertisement

Log in

Common Pathways of Autoimmune Inflammatory Myopathies and Genetic Neuromuscular Disorders

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

It has been shown that many hereditary motor neuron diseases are caused by mutation of RNA processing enzymes. Survival of motor neuron 1 (SMN1) is well-known as a causative gene for spinal muscular atrophy (SMA) and mutations of glycyl- and tyrosyl-tRNA synthetases are identified as a cause of distal SMA and Charcot–Marie–Tooth disease. Why and how the dysfunction of these ubiquitously expressed genes involved in RNA processing can cause a specific neurological disorder is not well understood. Interestingly, SMN complex has been identified recently as a new target of autoantibodies in polymyositis (PM). Autoantibodies in systemic rheumatic diseases are clinically useful biomarkers associated with a particular diagnosis, subset of a disease, or certain clinical characteristics. Many autoantibodies produced in patients with polymyositis/dermatomyositis (PM/DM) target RNA–protein complexes such as aminoacyl tRNA synthetases. It is interesting to note these same RNA–protein complexes recognized by autoantibodies in PM/DM are also responsible for genetic neuromuscular disease. Certain RNA–protein complexes are also targets of autoantibodies in paraneoplastic neurological disorders. Thus, there are several interesting associations between RNA-processing enzymes and neuromuscular disorders. Although pathogenetic roles of autoantibodies to intracellular antigens are generally considered unlikely, understanding the mechanisms of antigen selection in a particular disease and specific neurological symptoms caused by disruption of ubiquitous RNA-processing enzyme may help identify a common path in genetic neuromuscular disorders and autoimmunity in inflammatory myopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lukong KE, Chang KW, Khandjian EW, Richard S (2008) RNA-binding proteins in human genetic disease. Trends Genet 24:416–425

    Article  PubMed  CAS  Google Scholar 

  2. Baumer D, Ansorge O, Almeida M, Talbot K (2010) The role of RNA processing in the pathogenesis of motor neuron degeneration. Expert Rev Mol Med 12:e21

    Article  PubMed  Google Scholar 

  3. Kolb SJ, Sutton S, Schoenberg DR (2010) RNA processing defects associated with diseases of the motor neuron. Muscle Nerve 41:5–17

    Article  PubMed  CAS  Google Scholar 

  4. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  PubMed  CAS  Google Scholar 

  5. Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J 15:3555–3565

    PubMed  CAS  Google Scholar 

  6. Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298:1775–1779

    Article  PubMed  CAS  Google Scholar 

  7. Chari A, Paknia E, Fischer U (2009) The role of RNP biogenesis in spinal muscular atrophy. Curr Opin Cell Biol 21:387–393

    Article  PubMed  CAS  Google Scholar 

  8. Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609

    Article  PubMed  CAS  Google Scholar 

  9. Tan EM (1989) Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 44:93–151

    Article  PubMed  CAS  Google Scholar 

  10. Satoh M, Chan EKL, Sobel ES, Kimpel DL, Yamasaki Y, Narain S, Mansoor R, Reeves WH (2007) Clinical implication of autoantibodies in patients with systemic rheumatic diseases. Expert Rev Clin Immunol 3:721–738

    Article  PubMed  CAS  Google Scholar 

  11. Satoh M, Chan JY, Ross SJ, Ceribelli A, Cavazzana I, Franceschini F, Li Y, Reeves WH, Sobel ES, Chan EK (2011) Autoantibodies to survival of motor neuron (SMN) complex in patients with polymyositis—immunoprecipitation of D-E-F-G without other components of small nuclear ribonucleoproteins. Arthritis Rheum 63:1972–1978

    Article  PubMed  CAS  Google Scholar 

  12. Meister G, Eggert C, Fischer U (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12:472–478

    Article  PubMed  CAS  Google Scholar 

  13. Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14:305–312

    Article  PubMed  CAS  Google Scholar 

  14. Antonellis A, Green ED (2008) The role of aminoacyl–tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 9:87–107

    Article  PubMed  CAS  Google Scholar 

  15. Motley WW, Talbot K, Fischbeck KH (2010) GARS axonopathy: not every neuron’s cup of tRNA. Trends Neurosci 33:59–66

    Article  PubMed  CAS  Google Scholar 

  16. Targoff IN (2002) Laboratory testing in the diagnosis and management of idiopathic inflammatory myopathies. Rheum Dis Clin North Am 28:859–890, viii

    Article  PubMed  Google Scholar 

  17. Satoh M, Vazquez-Del Mercado M, Chan EK (2009) Clinical interpretation of antinuclear antibody tests in systemic rheumatic diseases. Mod Rheumatol 19:219–228

    Article  PubMed  CAS  Google Scholar 

  18. Betteridge ZE, Gunawardena H, McHugh NJ (2009) Pathogenic mechanisms of disease in myositis: autoantigens as clues. Curr Opin Rheumatol 21:604–609

    Article  PubMed  CAS  Google Scholar 

  19. Gunawardena H, Betteridge ZE, McHugh NJ (2009) Myositis-specific autoantibodies: their clinical and pathogenic significance in disease expression. Rheumatology (Oxford) 48:607–612

    Article  CAS  Google Scholar 

  20. Nakashima R, Mimori T (2010) Clinical and pathophysiological significance of myositis-specific and myositis-associated autoantibodies. Int J Clin Rheumatol 5:523–536

    Article  CAS  Google Scholar 

  21. Betteridge ZE, Gunawardena H, McHugh NJ (2011) Novel autoantibodies and clinical phenotypes in adult and juvenile myositis. Arthritis Res Ther 13:209

    Article  PubMed  Google Scholar 

  22. Satoh M, Richards HB, Hamilton KJ, Reeves WH (1997) Human anti-nuclear ribonucleoprotein antigen autoimmune sera contain a novel subset of autoantibodies that stabilizes the molecular interaction of U1RNP-C protein with the Sm core proteins. J Immunol 158:5017–5025

    PubMed  CAS  Google Scholar 

  23. Satoh M, Ajmani AK, Stojanov L, Langdon JJ, Ogasawara T, Wang J, Dooley MA, Richards HB, Winfield JB, Carter TH et al (1996) Autoantibodies that stabilize the molecular interaction of Ku antigen with DNA dependent protein kinase catalytic subunit. Clin Exp Immunol 105:460–467

    Article  PubMed  CAS  Google Scholar 

  24. Golembe TJ, Yong J, Battle DJ, Feng W, Wan L, Dreyfuss G (2005) Lymphotropic Herpesvirus saimiri uses the SMN complex to assemble Sm cores on its small RNAs. Mol Cell Biol 25:602–611

    Article  PubMed  CAS  Google Scholar 

  25. Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371:2120–2133

    Article  PubMed  Google Scholar 

  26. Wee CD, Kong L, Sumner CJ (2010) The genetics of spinal muscular atrophies. Curr Opin Neurol 23:450–458

    Article  PubMed  CAS  Google Scholar 

  27. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64

    Article  PubMed  CAS  Google Scholar 

  28. van Blitterswijk M, Landers JE (2010) RNA processing pathways in amyotrophic lateral sclerosis. Neurogenetics 11:275–290

    Article  PubMed  CAS  Google Scholar 

  29. Van Damme P, Robberecht W (2009) Recent advances in motor neuron disease. Curr Opin Neurol 22:486–492

    Article  PubMed  Google Scholar 

  30. Lagier-Tourenne C, Cleveland DW (2009) Rethinking ALS: the FUS about TDP-43. Cell 136:1001–1004

    Article  PubMed  CAS  Google Scholar 

  31. Da Cruz S, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol (in press)

  32. Salajegheh M, Pinkus JL, Taylor JP, Amato AA, Nazareno R, Baloh RH, Greenberg SA (2009) Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. Muscle Nerve 40:19–31

    Article  PubMed  CAS  Google Scholar 

  33. Weihl CC, Pestronk A (2010) Sporadic inclusion body myositis: possible pathogenesis inferred from biomarkers. Curr Opin Neurol 23:482–488

    Article  PubMed  CAS  Google Scholar 

  34. Yong J, Wan L, Dreyfuss G (2004) Why do cells need an assembly machine for RNA–protein complexes? Trends Cell Biol 14:226–232

    Article  PubMed  CAS  Google Scholar 

  35. Stum M, McLaughlin HM, Kleinbrink EL, Miers KE, Ackerman SL, Seburn KL, Antonellis A, Burgess RW (2011) An assessment of mechanisms underlying peripheral axonal degeneration caused by aminoacyl-tRNA synthetase mutations. Mol Cell Neurosci 46:432–443

    Article  PubMed  CAS  Google Scholar 

  36. Seburn KL, Nangle LA, Cox GA, Schimmel P, Burgess RW (2006) An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot–Marie–Tooth 2D mouse model. Neuron 51:715–726

    Article  PubMed  CAS  Google Scholar 

  37. Achilli F, Bros-Facer V, Williams HP, Banks GT, AlQatari M, Chia R, Tucci V, Groves M, Nickols CD, Seburn KL et al (2009) An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot–Marie–Tooth type 2D peripheral neuropathy. Dis Model Mech 2:359–373

    Article  PubMed  CAS  Google Scholar 

  38. Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V et al (2006) Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot–Marie–Tooth neuropathy. Nat Genet 38:197–202

    Article  PubMed  CAS  Google Scholar 

  39. Scheper GC, van der Klok T, van Andel RJ, van Berkel CG, Sissler M, Smet J, Muravina TI, Serkov SV, Uziel G, Bugiani M et al (2007) Mitochondrial aspartyl–tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39:534–539

    Article  PubMed  CAS  Google Scholar 

  40. Riley LG, Cooper S, Hickey P, Rudinger-Thirion J, McKenzie M, Compton A, Lim SC, Thorburn D, Ryan MT, Giege R et al (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia—MLASA syndrome. Am J Hum Genet 87:52–59

    Article  PubMed  CAS  Google Scholar 

  41. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50–55

    Article  PubMed  CAS  Google Scholar 

  42. Dalmau J, Rosenfeld MR (2008) Paraneoplastic syndromes of the CNS. Lancet Neurol 7:327–340

    Article  PubMed  Google Scholar 

  43. Rosenfeld MR, Dalmau J (2010) Update on paraneoplastic and autoimmune disorders of the central nervous system. Semin Neurol 30:320–331

    Article  PubMed  Google Scholar 

  44. Graus F, Saiz A, Dalmau J (2010) Antibodies and neuronal autoimmune disorders of the CNS. J Neurol 257:509–517

    Article  PubMed  CAS  Google Scholar 

  45. Musunuru K (2003) Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc Med 13:188–195

    Article  PubMed  CAS  Google Scholar 

  46. Buckanovich RJ, Yang YY, Darnell RB (1996) The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J Neurosci 16:1114–1122

    PubMed  CAS  Google Scholar 

  47. Didelot A, Honnorat J (2009) Update on paraneoplastic neurological syndromes. Curr Opin Oncol 21:566–572

    Article  PubMed  Google Scholar 

  48. Geis C, Weishaupt A, Hallermann S, Grunewald B, Wessig C, Wultsch T, Reif A, Byts N, Beck M, Jablonka S et al (2010) Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain 133:3166–3180

    Article  PubMed  Google Scholar 

  49. Eystathioy T, Chan EK, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13:1338–1351

    Article  PubMed  CAS  Google Scholar 

  50. Bhanji RA, Eystathioy T, Chan EK, Bloch DB, Fritzler MJ (2007) Clinical and serological features of patients with autoantibodies to GW/P bodies. Clin Immunol 125:247–256

    Article  PubMed  CAS  Google Scholar 

  51. Alarcon-Segovia D, Ruiz-Arguelles A, Fishbein E (1978) Antibody to nuclear ribonucleoprotein penetrates live human mononuclear cells through Fc receptors. Nature 271:67–69

    Article  PubMed  CAS  Google Scholar 

  52. Alarcon-Segovia D (2001) Antinuclear antibodies: to penetrate or not to penetrate, that was the question. Lupus 10:315–318

    Article  PubMed  CAS  Google Scholar 

  53. Lee PY, Kumagai Y, Li Y, Takeuchi O, Yoshida H, Weinstein J, Kellner ES, Nacionales D, Barker T, Kelly-Scumpia K et al (2008) TLR7-dependent and Fc{gamma}R-independent production of type I interferon in experimental mouse lupus. J Exp Med 205:2995–3006

    Article  PubMed  CAS  Google Scholar 

  54. Tan EM (2001) Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis. J Clin Invest 108:1411–1415

    PubMed  CAS  Google Scholar 

  55. Abu-Shakra M, Buskila D, Ehrenfeld M, Conrad K, Shoenfeld Y (2001) Cancer and autoimmunity: autoimmune and rheumatic features in patients with malignancies. Ann Rheum Dis 60:433–441

    Article  PubMed  CAS  Google Scholar 

  56. Reuschenbach M, von Knebel DM, Wentzensen N (2009) A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 58:1535–1544

    Article  PubMed  CAS  Google Scholar 

  57. Targoff IN, Mamyrova G, Trieu EP, Perurena O, Koneru B, O’Hanlon TP, Miller FW, Rider LG (2006) A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum 54:3682–3689

    Article  PubMed  CAS  Google Scholar 

  58. Kaji K, Fujimoto M, Hasegawa M, Kondo M, Saito Y, Komura K, Matsushita T, Orito H, Hamaguchi Y, Yanaba K et al (2007) Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis: an association with malignancy. Rheumatology (Oxford) 46:25–28

    Article  CAS  Google Scholar 

  59. Gunawardena H, Wedderburn LR, North J, Betteridge Z, Dunphy J, Chinoy H, Davidson JE, Cooper RG, McHugh NJ (2008) Clinical associations of autoantibodies to a p155/140 kDa doublet protein in juvenile dermatomyositis. Rheumatology (Oxford)

  60. Trallero-Araguas E, Labrador-Horrillo M, Selva-O’Callaghan A, Martinez MA, Martinez-Gomez X, Palou E, Rodriguez-Sanchez JL, Vilardell-Tarres M (2010) Cancer-associated myositis and anti-p155 autoantibody in a series of 85 patients with idiopathic inflammatory myopathy. Medicine (Baltimore) 89:47–52

    Article  CAS  Google Scholar 

  61. Vincent DF, Yan KP, Treilleux I, Gay F, Arfi V, Kaniewski B, Marie JC, Lepinasse F, Martel S, Goddard-Leon S et al (2009) Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet 5:e1000575

    Article  PubMed  Google Scholar 

  62. Herquel B, Ouararhni K, Khetchoumian K, Ignat M, Teletin M, Mark M, Bechade G, Van Dorsselaer A, Sanglier-Cianferani S, Hamiche A et al (2011) Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci U S A 108:8212–8217

    Article  PubMed  CAS  Google Scholar 

  63. Aucagne R, Droin N, Paggetti J, Lagrange B, Largeot A, Hammann A, Bataille A, Martin L, Yan KP, Fenaux P et al (2011) Transcription intermediary factor 1gamma is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J Clin Invest 121:2361–2370

    Article  PubMed  CAS  Google Scholar 

  64. Tan EM (1989) Do autoantibodies inhibit function of their cognate antigens in vivo? Arthritis Rheum 32:924–925

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Satoh.

Additional information

This study is supported in part by a grant from the Lupus Research Institute and the National Institutes of Health grant AI47859.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, M., Ceribelli, A. & Chan, E.K.L. Common Pathways of Autoimmune Inflammatory Myopathies and Genetic Neuromuscular Disorders. Clinic Rev Allerg Immunol 42, 16–25 (2012). https://doi.org/10.1007/s12016-011-8286-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-011-8286-7

Keywords

Navigation