Skip to main content
Log in

Synergistic Effect of Human Chorionic Gonadotropin and Granulocyte Colony Stimulating Factor in the Mobilization of HSPCs Improves Overall Survival After PBSCT in a Preclinical Murine Model. Are We Far Enough for Therapy?

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Strategies to improve hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow can have a pivotal role in addressing iatrogenic bone-marrow insufficiency from chemo(radio)therapy and overcoming peripheral blood stem cell transplantation (PBSCT) limitations such as insufficient mobilization. Granulocyte-colony stimulating factor (G-CSF) represents the standard mobilization strategy for HSPC and has done so for more than three decades since its FDA approval. Its association with non–G-CSF agents is often employed for difficult HSPC mobilization. However, obtaining a synergistic effect between the two classes is limited by different timing and mechanisms of action. Based on our previous in vitro results, we tested the mobilization potential of human chorionic gonadotropin (HCG), alone and in combination with G-CSF in vivo in a murine study. Our results show an improved mobilization capability of the combination, which seems to act synergistically in stimulating hematopoiesis. With the current understanding of the dynamics of HSPCs and their origins in more primitive cells related to the germline, new strategies to employ the mobilization of hematopoietic progenitors using chorionic gonadotropins could soon become clinical practice.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data supporting this study's findings are available from the corresponding author, [CCA], upon reasonable request.

Code Availability

Not applicable.

References

  1. Jagannathan-Bogdan, M., & Zon, L. I. (2013). Hematopoiesis. Development, 140, 2463. https://doi.org/10.1242/DEV.083147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim, C. H. (2010). Homeostatic and pathogenic extramedullary hematopoiesis. Journal of Blood Medicine, 1, 13. https://doi.org/10.2147/JBM.S7224

    Article  PubMed  PubMed Central  Google Scholar 

  3. Crawford, J., Caserta, C., Roila, F. (2010). Hematopoietic growth factors: ESMO clinical practice guidelines for the applications. Annals of Oncology, 21(Suppl 5). https://doi.org/10.1093/ANNONC/MDQ195

  4. Snowden, J. A., Sánchez-Ortega, I., Corbacioglu, S., et al. (2022). Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2022. Bone Marrow Transplantation, 57, 1217. https://doi.org/10.1038/S41409-022-01691-W

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wuchter, P., Ran, D., Bruckner, T., et al. (2010). Poor mobilization of hematopoietic stem cells-definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biology of Blood and Marrow Transplantation, 16, 490–499. https://doi.org/10.1016/J.BBMT.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  6. Menendez-Gonzalez, J. B., & Hoggatt, J. (2021). Hematopoietic stem cell mobilization: current collection approaches, stem cell heterogeneity, and a proposed new method for stem cell transplant conditioning. Stem Cell Reviews and Reports, 176(17), 1939–1953. https://doi.org/10.1007/S12015-021-10272-1

    Article  Google Scholar 

  7. Hoggatt, J., & Pelus, L. M. (2012). Hematopoietic stem cell mobilization with agents other than G-CSF. Methods in Molecular Biology, 904, 49–67. https://doi.org/10.1007/978-1-61779-943-3_4/COVER

    Article  CAS  PubMed  Google Scholar 

  8. Van Overstraeten-Schlögel, N., Beguin, Y., & Gothot, A. (2006). Role of stromal-derived factor-1 in the hematopoietic-supporting activity of human mesenchymal stem cells. European Journal of Haematology, 76, 488–493. https://doi.org/10.1111/J.1600-0609.2006.00633.X

    Article  PubMed  Google Scholar 

  9. Fajardo-Orduña, G. R., Mayani, H., & Montesinos, J. J. (2015). Hematopoietic support capacity of mesenchymal stem cells: biology and clinical potential. Archives of Medical Research, 46, 589–596. https://doi.org/10.1016/J.ARCMED.2015.10.001

    Article  PubMed  Google Scholar 

  10. De Luca, L., Trino, S., Laurenzana, I., et al. (2016). MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation. Oncotarget, 7, 6676–6692. https://doi.org/10.18632/ONCOTARGET.6791

    Article  PubMed  Google Scholar 

  11. Aqmasheh, S., Shamsasanjan, K., Akbarzadehlaleh, P., et al. (2017). Effects of mesenchymal stem cell derivatives on hematopoiesis and hematopoietic stem cells. Advanced Pharmaceutical Bulletin, 7, 165. https://doi.org/10.15171/APB.2017.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nancarrow-Lei, R., Mafi, P., Mafi, R., Khan, W. (2017). A systemic review of adult mesenchymal stem cell sources and their multilineage differentiation potential relevant to musculoskeletal tissue repair and regeneration. Current Stem Cell Research & Therapy, 12. https://doi.org/10.2174/1574888X12666170608124303

  13. Rossi, L., Challen, G. A., Sirin, O., et al. (2011). Hematopoietic stem cell characterization and isolation. Methods in Molecular Biology, 750, 47. https://doi.org/10.1007/978-1-61779-145-1_3

    Article  CAS  PubMed  Google Scholar 

  14. Saleh, M., Shamsasanjan, K., Movassaghpourakbari, A., et al. (2015). The impact of mesenchymal stem cells on differentiation of hematopoietic stem cells. Advanced Pharmaceutical Bulletin, 5, 299. https://doi.org/10.15171/APB.2015.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abdelbaset-Ismail, A., Suszynska, M., Borkowska, S. J., et al. (2015). Human hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) express several functional pituitary and gonadal sex hormone receptors - identification of follicle stimulating hormone (FSH) and luteinizing hormone (LH) as new growth factors for HSPCs and MSCs. Blood, 126, 2393–2393. https://doi.org/10.1182/BLOOD.V126.23.2393.2393

    Article  Google Scholar 

  16. Shahidi, N. T., Diamond, L. K. (2010). Testosterone-induced remission in aplastic anemia of both acquired and congenital types. 264, 953–967. https://doi.org/10.1056/NEJM196105112641901

  17. Seip, M. (1961). Aplastic anemia treated with anabolic steroids and corticosteroidsl. Acta Paediatrica, 50, 561–564. https://doi.org/10.1111/J.1651-2227.1961.TB08046.X

    Article  CAS  PubMed  Google Scholar 

  18. Coletta, A., Esposito, L., & Palomby, L. (1961). On several recent therapeutic trends in hypoplastic pancytopenia: Testosterone and anabolic steroids. La Pediatria, 69, 413–421.

    CAS  PubMed  Google Scholar 

  19. Calado, R. T., & Clé, D. V. (2017). Treatment of inherited bone marrow failure syndromes beyond transplantation. Hematology: the American Society of Hematology Education Program, 2017, 96. https://doi.org/10.1182/ASHEDUCATION-2017.1.96

    Article  Google Scholar 

  20. Selleri, C., Catalano, L., De Rosa, G., et al. (1991). Danazol: In vitro effects on human hemopoiesis and in vivo activity in hypoplastic and myelodysplastic disorders. European Journal of Haematology, 47, 197–203. https://doi.org/10.1111/J.1600-0609.1991.TB01555.X

    Article  CAS  PubMed  Google Scholar 

  21. Nakada, D., Oguro, H., Levi, B. P., et al. (2014). Estrogen increases haematopoietic stem cell self-renewal in females and during pregnancy. Nature, 505, 555. https://doi.org/10.1038/NATURE12932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maggio, M., Snyder, P. J., Ceda, G. P., et al. (2013). Is the haematopoietic effect of testosterone mediated by erythropoietin? The results of a clinical trial in older men. Andrology, 1, 24–28. https://doi.org/10.1111/J.2047-2927.2012.00009.X

    Article  CAS  PubMed  Google Scholar 

  23. Ascoli, M., Fanelli, F., & Segaloff, D. L. (2002). The Lutropin/choriogonadotropin receptor, a 2002 perspective. Endocrine Reviews, 23, 141–174. https://doi.org/10.1210/EDRV.23.2.0462

    Article  CAS  PubMed  Google Scholar 

  24. Mierzejewska, K., Borkowska, S., Suszynska, E., et al. (2015). Hematopoietic stem/progenitor cells express several functional sex hormone receptors—novel evidence for a potential developmental link between hematopoiesis and primordial germ cells. Stem Cells and Development, 24, 927. https://doi.org/10.1089/SCD.2014.0546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Edgar, R., Mazor, Y., Rinon, A., et al. (2013). LifeMap discovery™: The embryonic development, stem cells, and regenerative medicine research portal. PLoS One, 8, 66629. https://doi.org/10.1371/JOURNAL.PONE.0066629

    Article  Google Scholar 

  26. Tourkova, I. L., Witt, M. R., Li, L., et al. (2015). Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones. Annals of the New York Academy of Sciences, 1335, 100–109. https://doi.org/10.1111/NYAS.12502

    Article  CAS  PubMed  Google Scholar 

  27. Ratajczak, M. Z., & Suszynska, M. (2016). Emerging strategies to enhance homing and engraftment of hematopoietic stem cells. Stem Cell Reviews and Reports, 12, 121–128. https://doi.org/10.1007/S12015-015-9625-5/FIGURES/1

    Article  CAS  PubMed  Google Scholar 

  28. Rahman, N. A., & Rao, C. V. (2009). Recent progress in luteinizing hormone/human chorionic gonadotrophin hormone research. Molecular Human Reproduction, 15, 703–711. https://doi.org/10.1093/MOLEHR/GAP067

    Article  CAS  PubMed  Google Scholar 

  29. Handschuh, K., Guibourdenche, J., Tsatsaris, V., et al. (2007). Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-gamma. Endocrinology, 148, 5011–5019. https://doi.org/10.1210/EN.2007-0286

    Article  CAS  PubMed  Google Scholar 

  30. Canfield, R. E., O’Connor, J. F., Birken, S., et al. (1987). Development of an assay for a biomarker of pregnancy and early fetal loss. Environmental Health Perspectives, 74, 57–66. https://doi.org/10.1289/EHP.877457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lapthorn, A. J., Harris, D. C., Littlejohn, A., et al. (1994). Crystal structure of human chorionic gonadotropin. Nature, 369, 455–461. https://doi.org/10.1038/369455A0

    Article  CAS  PubMed  Google Scholar 

  32. Lee, J. A., & Ramasamy, R. (2018). Indications for the use of human chorionic gonadotropic hormone for the management of infertility in hypogonadal men. Translational Andrology and Urology, 7, S348. https://doi.org/10.21037/TAU.2018.04.11

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao, X., Lee, H. Y., Li, W. et al. (2017). Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. Proceedings of the National Academy of Sciences, 114:10107–10112.https://doi.org/10.1073/PNAS.1711058114

  34. Arnold, R., Schmeiser, T., Heit, W., et al. (1986). Hemopoietic reconstitution after bone marrow transplantation. Experimental Hematology, 14, 271–277.

    CAS  PubMed  Google Scholar 

  35. Domenech, J., Linassier, C., Gihana, E., et al. (1995). Prolonged impairment of hematopoiesis after high-dose therapy followed by autologous bone marrow transplantation. Blood, 85, 3320–3327. https://doi.org/10.1182/BLOOD.V85.11.3320.BLOODJOURNAL85113320

    Article  CAS  PubMed  Google Scholar 

  36. Cismaru, A. C., Soritau, O., Jurj, A. M., et al. (2020). Human chorionic gonadotropin improves the proliferation and regenerative potential of bone marrow adherent stem cells and the immune tolerance of fetal microchimeric stem cells in vitro. Stem Cell Reviews and Reports, 163(16), 524–540. https://doi.org/10.1007/S12015-020-09957-W

    Article  Google Scholar 

  37. Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7, 27. https://doi.org/10.4103/0976-0105.177703

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morley, A., & Blake, J. (1974). Haemopoietic precursor cells in experimental hypoplastic marrow failure. Australian Journal of Experimental Biology and Medical Science, 52, 909–914. https://doi.org/10.1038/ICB.1974.90

    Article  CAS  PubMed  Google Scholar 

  39. Boime, I., & Ben-Menahem, D. (1999). Glycoprotein hormone structure-function and analog design. Recent Progress in Hormone Research, 54, 271–289.

    CAS  PubMed  Google Scholar 

  40. Menzies, B. R., Pask, A. J., & Renfree, M. B. (2011). Placental expression of pituitary hormones is an ancestral feature of therian mammals. EvoDevo, 2, 1–9. https://doi.org/10.1186/2041-9139-2-16/FIGURES/4

    Article  Google Scholar 

  41. Valassi, E. (2021). Pituitary disease and pregnancy. : Endocrinología, Diabetes y Nutrición (English ed), 68, 184–195. https://doi.org/10.1016/J.ENDIEN.2020.07.002

    Article  Google Scholar 

  42. Ueland, K. (1976). Maternal cardiovascular dynamics: VII. Intrapartum blood volume changes. American Journal of Obstetrics and Gynecology, 126, 671–677. https://doi.org/10.1016/0002-9378(76)90517-2

    Article  CAS  PubMed  Google Scholar 

  43. Chandra, S., Tripathi, A. K., Mishra, S., et al. (2012). Physiological changes in hematological parameters during pregnancy. Indian Journal of Hematology and Blood Transfusion, 28, 144. https://doi.org/10.1007/S12288-012-0175-6

    Article  PubMed  PubMed Central  Google Scholar 

  44. Karalis, I., Nadar, S. K., Al Yemeni, E., et al. (2005). Platelet activation in pregnancy-induced hypertension. Thrombosis Research, 116, 377–383. https://doi.org/10.1016/J.THROMRES.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  45. Luo, C., Wang, L., Wu, G., et al. (2021). (2021) Comparison of the efficacy of hematopoietic stem cell mobilization regimens: A systematic review and network meta-analysis of preclinical studies. Stem Cell Research & Therapy, 121(12), 1–19. https://doi.org/10.1186/S13287-021-02379-6

    Article  Google Scholar 

  46. Kuan, J. W., Su, A. T., & Leong, C. F. (2017). Pegylated granulocyte-colony stimulating factor versus non-pegylated granulocyte-colony stimulating factor for peripheral blood stem cell mobilization: A systematic review and meta-analysis. Journal of Clinical Apheresis, 32, 517–542. https://doi.org/10.1002/JCA.21550

    Article  PubMed  Google Scholar 

  47. Thakkar, D., Tiwari, A. K., Pabbi, S., et al. (2021). Peripheral blood stem cell mobilization with pegylated granulocyte colony stimulating factor in children. Cancer Reports, 4, e1408. https://doi.org/10.1002/CNR2.1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, L., Yin, J., Li, Y., et al. (2021). Allogeneic hematopoietic stem cell transplantation mobilized with pegylated granulocyte colony-stimulating factor ameliorates severe acute graft-versus-host disease through enrichment of monocytic myeloid-derived suppressor cells in the graft: a real world experience. Frontiers in Immunology, 12, 1. https://doi.org/10.3389/FIMMU.2021.621935/FULL

    Article  Google Scholar 

  49. Wright, D. E., Cheshier, S. H., Wagers, A. J., et al. (2001). Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood, 97, 2278–2285. https://doi.org/10.1182/BLOOD.V97.8.2278

    Article  CAS  PubMed  Google Scholar 

  50. Devine, S. M., Vij, R., Rettig, M., et al. (2008). Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood, 112, 990–998. https://doi.org/10.1182/BLOOD-2007-12-130179

    Article  CAS  PubMed  Google Scholar 

  51. DiPersio, J. F., Stadtmauer, E. A., Nademanee, A., et al. (2009). Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood, 113, 5720–5726. https://doi.org/10.1182/BLOOD-2008-08-174946

    Article  CAS  PubMed  Google Scholar 

  52. Attolico, I., Pavone, V., Ostuni, A., et al. (2012). Plerixafor added to chemotherapy plus G-CSF is safe and allows adequate PBSC collection in predicted poor mobilizer patients with multiple myeloma or lymphoma. Biology of Blood and Marrow Transplantation, 18, 241–249. https://doi.org/10.1016/J.BBMT.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  53. Duarte, R. F., & Frank, D. A. (2002). The synergy between stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF): Molecular basis and clinical relevance. Leukaemia & Lymphoma, 43, 1179–1187. https://doi.org/10.1080/10428190290026231

    Article  CAS  Google Scholar 

  54. Turan, R. D. (2021). Pluripotin facilitates the expansion of hematopoietic stem cells, but restricts the growth of fibroblasts and the proliferation of mesenchymal stem cells from the bone marrow. https://doi.org/10.21203/RS.3.RS-250861/V1

  55. AbuSamra, D. B., Aleisa, F. A., Al-Amoodi, A. S., et al. (2017). Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Advances, 1, 2799. https://doi.org/10.1182/BLOODADVANCES.2017004317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reyes-Reyes, M., Mora, N., Gonzalez, G., & Rosales, C. (2002). beta1 and beta2 integrins activate different signalling pathways in monocytes. The Biochemical Journal, 363, 273. https://doi.org/10.1042/0264-6021:3630273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, M. Y., & Cho, J. Y. (2016). Molecular association of CD98, CD29, and CD147 critically mediates monocytic U937 cell adhesion. The Korean Journal of Physiology & Pharmacology, 20, 515. https://doi.org/10.4196/KJPP.2016.20.5.515

    Article  CAS  Google Scholar 

  58. Pilarski, L. M., Yacyshyn, B. R., Jensen, G. S., et al. (1991). Beta 1 integrin (CD29) expression on human postnatal T cell subsets defined by selective CD45 isoform expression. The Journal of Immunology, 147, 830–837. https://doi.org/10.4049/JIMMUNOL.147.3.830

    Article  CAS  PubMed  Google Scholar 

  59. Maleki, M., Ghanbarvand, F., Behvarz, M. R., et al. (2014). Comparison of mesenchymal stem cell markers in multiple human adult stem cells. International Journal of Stem Cells, 7, 118. https://doi.org/10.15283/IJSC.2014.7.2.118

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sierra-Parraga, J. M., Merino, A., Eijken, M., et al. (2020). Reparative effect of mesenchymal stromal cells on endothelial cells after hypoxic and inflammatory injury. Stem Cell Research & Therapy, 11, 1–11. https://doi.org/10.1186/S13287-020-01869-3/FIGURES/5

    Article  Google Scholar 

  61. Lin, C. S., Ning, H., Lin, G., & Lue, T. F. (2012). Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy, 14, 1159–1163. https://doi.org/10.3109/14653249.2012.729817

    Article  CAS  PubMed  Google Scholar 

  62. Stroncek, D. F., Matthews, C. L., Follmann, D., & Leitman, S. F. (2002). Kinetics of G-CSF-induced granulocyte mobilization in healthy subjects: Effects of route of administration and addition of dexamethasone. Transfusion, 42, 597–602. https://doi.org/10.1046/J.1537-2995.2002.00091.X

    Article  CAS  PubMed  Google Scholar 

  63. Filgrastim Side Effects: Common, Severe, Long Term - Drugs.com. https://www.drugs.com/sfx/filgrastim-side-effects.html. Accessed 8 Jun 2023

  64. Tavian, M., & Péault, B. (2005). Embryonic development of the human hematopoietic system. International Journal of Developmental Biology, 49, 243–250. https://doi.org/10.1387/IJDB.041957MT

    Article  CAS  PubMed  Google Scholar 

  65. Pereda Tapiol, J., & Niimi, G. (2008). Embryonic erythropoiesis in human yolk sac: Two different compartments for two different processes. Microscopy Research and Technique, 71, 856–862. https://doi.org/10.1002/JEMT.20627

    Article  Google Scholar 

  66. Sabin, F. R. (1920). Studies on the origin of blood-vessels and of red blood-corpuscles as seen in the living blastoderm of chicks during the second day of incubation | WorldCat.org. Contrib Embryol, 1, 213–262.

    Google Scholar 

  67. Murray, P. D. F. (1932). The development in vitro of the blood of the early chick embryo.Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 111:497–521.https://doi.org/10.1098/RSPB.1932.0070

  68. Tavian, M., Hallais, M. F., & Péault, B. (1999). Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development, 126, 793–803. https://doi.org/10.1242/DEV.126.4.793

    Article  CAS  PubMed  Google Scholar 

  69. Zovein, A. C., Hofmann, J. J., Lynch, M., et al. (2008). Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell, 3, 625. https://doi.org/10.1016/J.STEM.2008.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs) – an update and future directions. Circulation Research, 124, 208. https://doi.org/10.1161/CIRCRESAHA.118.314287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Virant-Klun, I. (2016). Very small embryonic-like stem cells: a potential developmental link between germinal lineage and hematopoiesis in humans. Stem Cells and Development, 25, 101–113. https://doi.org/10.1089/SCD.2015.0275

    Article  CAS  PubMed  Google Scholar 

  72. Ratajczak, M. Z., Zuba-Surma, E., Wojakowski, W., et al. (2013). Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: Recent pros and cons in the midst of a lively debate. Leukemia 2014, 283(28), 473–484. https://doi.org/10.1038/leu.2013.255

    Article  Google Scholar 

  73. Migliaccio, G., Migliaccio, A. R., Petti, S., et al. (1986). Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac––liver transition. The Journal of Clinical Investigation, 78, 51–60. https://doi.org/10.1172/JCI112572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cismaru, C. A., Pirlog, R., Calin, G. A., & Berindan-Neagoe, I. (2022). Stem cells in the tumor immune microenvironment –part of the cure or part of the disease? Ontogeny and dichotomy of stem and immune cells has led to better understanding. Stem Cell Reviews and Reports, 1, 1–17. https://doi.org/10.1007/S12015-022-10428-7

    Article  Google Scholar 

  75. Ratajczak, M. Z. (2017). Why are hematopoietic stem cells so “sexy”? – on a search for developmental explanation. Leukemia, 31, 1671. https://doi.org/10.1038/LEU.2017.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ratajczak, M. Z. (2015). A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia, 29, 776. https://doi.org/10.1038/LEU.2014.346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs). Circulation Research, 124, 208–210. https://doi.org/10.1161/CIRCRESAHA.118.314287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rich, I. N. (1995). Primordial germ cells are capable of producing cells of the hematopoietic system in vitro. Blood, 86, 463–472. https://doi.org/10.1182/BLOOD.V86.2.463.BLOODJOURNAL862463

    Article  CAS  PubMed  Google Scholar 

  79. Cismaru, C. A., Pop, L., & Berindan-Neagoe, I. (2018). Incognito: Are microchimeric fetal stem cells that cross placental barrier real emissaries of peace? Stem Cell Reviews and Reports, 145(14), 632–641. https://doi.org/10.1007/S12015-018-9834-9

    Article  Google Scholar 

  80. Cismaru, C. A., Soritau, O., Jurj, A.-M., et al. (2019). Isolation and Characterization of a Fetal-Maternal Microchimeric Stem Cell Population in Maternal Hair Follicles Long after Parturition. Stem Cell Reviews and Reports, 154(15), 519–529. https://doi.org/10.1007/S12015-019-09885-4

    Article  Google Scholar 

  81. Ratajczak, M. Z., Ratajczak, J., Suszynska, M., et al. (2017). A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circulation Research, 120, 166–178. https://doi.org/10.1161/CIRCRESAHA.116.309362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shaikh, A., Anand, S., Kapoor, S., et al. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Reviews and Reports, 13, 202–216. https://doi.org/10.1007/S12015-016-9714-0/FIGURES/6

    Article  CAS  PubMed  Google Scholar 

  83. Caplan, A. I., & Correa, D. (2011). The MSC: An injury drugstore. Cell Stem Cell, 9, 11. https://doi.org/10.1016/J.STEM.2011.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Caplan, A. I., & Hariri, R. (2015). Body management: Mesenchymal stem cells control the internal regenerator. Stem Cells Translational Medicine, 4, 695–701. https://doi.org/10.5966/SCTM.2014-0291

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rühle, A., Lopez Perez, R., Zou, B., et al. (2019). The therapeutic potential of mesenchymal stromal cells in the treatment of chemotherapy-induced tissue damage. Stem Cell Reviews and Reports, 153(15), 356–373. https://doi.org/10.1007/S12015-019-09886-3

    Article  Google Scholar 

  86. Wang, L., Zhu, C.-y, Ma, D.-x, et al. (2018). Efficacy and safety of mesenchymal stromal cells for the prophylaxis of chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation: a meta-analysis of randomized controlled trials. Annals of Hematology, 97, 1941–1950. https://doi.org/10.1007/S00277-018-3384-8

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the national grant PN-III-P1-1.1-PD-2019–1095, PD 202 ⁄ 2020 TROFOSTEM “Evaluation of the effect of human chorionic gonadotropin in stem cell transplantation as a novel approach for pretransplant mobilization”.

Author information

Authors and Affiliations

Authors

Contributions

CCA- study design and writing of the manuscript. TC- study coordination. JA- immunophenotyping. CS- manuscript revision. IE- sample processing. CG- data curation. GLM, GD and MR- animal experiments. BNI- critical revision for important intellectual content.

Corresponding author

Correspondence to Cosmin Andrei Cismaru.

Ethics declarations

Ethics Approval

The study was approved by the ethics committee of the University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, Romania with the approval no. 27/21.02.2023 and the National Sanitary Veterinary and Food Safety Agency of Romania with the approval no. 359/24.03.2023.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cismaru, C.A., Tomuleasa, C., Jurj, A. et al. Synergistic Effect of Human Chorionic Gonadotropin and Granulocyte Colony Stimulating Factor in the Mobilization of HSPCs Improves Overall Survival After PBSCT in a Preclinical Murine Model. Are We Far Enough for Therapy?. Stem Cell Rev and Rep 20, 206–217 (2024). https://doi.org/10.1007/s12015-023-10648-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10648-5

Keywords

Navigation