Skip to main content

Advertisement

Log in

Therapeutic Potential of Oral-Derived Mesenchymal Stem Cells in Retinal Repair

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The retina has restricted regeneration ability to recover injured cell layer because of reduced production of neurotrophic factors and increased inhibitory molecules against axon regrowth. A diseased retina could be regenerated by repopulating the damaged tissue with functional cell sources like mesenchymal stem cells (MSCs). The cells are able to release neurotrophic factors (NFs) to boost axonal regeneration and cell maintenance. In the current study, we comprehensively explore the potential of various types of stem cells (SCs) from oral cavity as promising therapeutic options in retinal regeneration. The oral MSCs derived from cranial neural crest cells (CNCCs) which explains their broad neural differentiation potential and secret rich NFs. They are comprised of dental pulp SCs (DPSCs), SCs from exfoliated deciduous teeth (SHED), SCs from apical papilla (SCAP), periodontal ligament-derived SCs (PDLSCs), gingival MSCs (GMSCs), and dental follicle SCs (DFSCs). The Oral MSCs are becoming a promising source of cells for cell-free or cell-based therapeutic approach to recover degenerated retinal. These cells have various mechanisms of action in retinal regeneration including cell replacement and the paracrine effect. It was demonstrated that they have more neuroprotective and neurotrophic effects on retinal cells than immediate replacement of injured cells in retina. This could be the reason that their therapeutic effects would be weakened over time. It can be concluded that neuronal and retinal regeneration through these cells is most likely due to their NFs that dramatically suppress oxidative stress, inflammation, and apoptosis. Although, oral MSCs are attractive therapeutic options for retinal injuries, more preclinical and clinical investigations are required.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

MSCs:

Mesenchymal stem cells

DPSCs:

Dental pulp stem cells

SHED:

Stem cells from exfoliated deciduous teeth

SCAP:

Stem cells from apical papilla

PDLSCs:

Periodontal ligament stem cells

GMSCs:

Gingival MSCs

GMPCs:

Gingival multipotent progenitor cells

DFSC:

Dental follicle stem cells

CNCCs:

Cranial neural crest derived ectomesenchymal cells

PDL:

Periodontal ligament

BM-MSCs:

Bone marrow mesenchymal stem cells

CM:

Conditioned medium

RGCs:

Retinal ganglion cells

RPE:

Retinal pigment epithelium

NSCs:

Neural stem cells

ASCs:

Adult stem cells

iPSCs:

induced pluripotent stem cells

ESCs:

Embryonic stem cells

bFGF:

Basic fibroblast growth factor

IGF-1:

Insulin-like growth factor-1

NGF:

Nerve growth factor

EGF:

Epidermal growth factor

BDNF:

Brain-derived neurotrophic factor

IL-1β:

interleukin-1β

TNF-α:

Tumor necrosis factor-α

SHH:

Sonic hedgehog

VGF:

VGF nerve growth factor inducible

NFM:

neurofilament protein

ONL:

Outer nuclear layer

INL:

Inner nuclear layer

BMP:

Bone morphogenic protein

NPCs:

Neural progenitor-like cells

DRG:

Dorsal root ganglion

NLCCs:

Neurosphere-like cell clusters

GD3:

Ganglioside D3

mDFPCs:

Murine dental follicle cells

VEGFA:

Vascular Endothelial Growth Factor A

CNTF:

Ciliary neurotrophic factor

NT-3:

Neurotrophin-3

GDNF:

Glial cell line-derived neurotrophic factor

References

  1. Ramsden, C. M., et al. (2013). Stem cells in retinal regeneration: Past, present and future. Development, 140(12), 2576–2585.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bray, A., et al. (2014). Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience, 280, 142–155.

    CAS  PubMed  Google Scholar 

  3. Richardson, P., McGuinness, U., & Aguayo, A. (1980). Axons from CNS neurones regenerate into PNS grafts. Nature, 284(5753), 264–265.

    CAS  PubMed  Google Scholar 

  4. Yamada, Y., et al. (2019). Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. International Journal of Molecular Sciences, 20(5), 1132.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ng, T. K., et al. (2015). Transdifferentiation of periodontal ligament-derived stem cells into retinal ganglion-like cells and its microRNA signature. Scientific Reports, 5(1), 1–16.

    Google Scholar 

  6. Ledesma-Martínez, E., Mendoza-Núñez, V. M., & Santiago-Osorio, E. (2016). Mesenchymal stem cells derived from dental pulp: a review. Stem cells international, 2016.

  7. Sun, J. (2016). Protective Effects of Human iPS-Derived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice.

  8. Li, Z., et al. (2016). Neural stem cells transplanted to the subretinal space of rd1 mice delay retinal degeneration by suppressing microglia activation. Cytotherapy, 18(6), 771–784.

    CAS  PubMed  Google Scholar 

  9. Soleimannejad, M., et al. (2017). Retina tissue engineering by conjunctiva mesenchymal stem cells encapsulated in fibrin gel: Hypotheses on novel approach to retinal diseases treatment. Medical Hypotheses, 101, 75–77.

    CAS  PubMed  Google Scholar 

  10. Gnecchi, M., et al. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, D., et al. (2019). Human dental pulp stem cells and gingival mesenchymal stem cells display action potential capacity in vitro after neuronogenic differentiation. Stem cell Reviews and Reports, 15(1), 67–81.

    CAS  PubMed  Google Scholar 

  12. Li, X. (2019). Differentiation of stem cells from human exfoliated deciduous teeth into retinal photoreceptor-like cells and their sustainability in vivo. Stem cells international, 2019.

  13. Ng, T. K., et al. (2014). Progress of mesenchymal stem cell therapy for neural and retinal diseases. World Journal of stem Cells, 6(2), 111.

    PubMed  PubMed Central  Google Scholar 

  14. Chen, P. M., et al. (2011). Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. Journal of Biomedical Science, 18(1), 1–11.

    Google Scholar 

  15. Cui, Y., et al. (2017). Mesenchymal stem cells attenuate hydrogen peroxide-induced oxidative stress and enhance neuroprotective effects in retinal ganglion cells. In Vitro Cellular & Developmental Biology-Animal, 53(4), 328–335.

    CAS  Google Scholar 

  16. Ezquer, M., et al. (2016). Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem cell Research & Therapy, 7(1), 1–17.

    Google Scholar 

  17. Adak, S. (2021). A review on mesenchymal stem cells for treatment of retinal diseases. Stem Cell Reviews and Reports, : p. 1–20.

  18. Cerman, E., et al. (2016). Retinal electrophysiological effects of intravitreal bone marrow derived mesenchymal stem cells in streptozotocin induced diabetic rats. PLoS One, 11(6), e0156495.

    PubMed  PubMed Central  Google Scholar 

  19. Xiao, L., & Nasu, M. (2014). From regenerative dentistry to regenerative medicine: Progress, challenges, and potential applications of oral stem cells. Stem Cells and Cloning: Advances and Applications, 7, 89.

    CAS  PubMed  Google Scholar 

  20. Sivan, P. P. (2016). Stem cell therapy for treatment of ocular disorders. Stem cells international, 2016.

  21. Jamal, M., et al. (2021). Oral tissues as sources for induced pluripotent stem cell derivation and their applications for neural, craniofacial, and dental tissue regeneration, in cell sources for iPSCs (pp. 71–106). Elsevier.

  22. Roato, I., et al. (2021). Oral cavity as a source of mesenchymal stem cells useful for regenerative medicine in dentistry. Biomedicines, 9(9), 1085.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bi, R., et al. (2021). Function of Dental follicle Progenitor/Stem cells and their potential in Regenerative Medicine: From mechanisms to applications. Biomolecules, 11(7), 997.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Priya, S. P., et al. (2015). Odontogenic epithelial stem cells: Hidden sources. Laboratory Investigation, 95(12), 1344–1352.

    Google Scholar 

  25. Chalisserry, E. P., et al. (2017). Therapeutic potential of dental stem cells. Journal of Tissue Engineering, 8, 2041731417702531.

    PubMed  PubMed Central  Google Scholar 

  26. Pouraghaei Sevari, S., et al. (2021). Harnessing Dental Stem Cell Immunoregulation using Cell-Laden Biomaterials. Journal of Dental Research, 100(6), 568–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Romeo, L., et al. (2018). Moringin induces neural differentiation in the stem cell of the human periodontal ligament. Scientific Reports, 8(1), 1–12.

    Google Scholar 

  28. Sharma, Y., et al. (2021). Neural basis of Dental Pulp Stem cells and its potential application in Parkinson’s disease. CNS & Neurological Disorders Drug Targets.

  29. Kawashima, N. (2012). Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Archives of oral Biology, 57(11), 1439–1458.

    PubMed  Google Scholar 

  30. Zhang, X. M., et al. (2021). Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer’s disease. Neural Regeneration Research, 16(5), 893.

    CAS  PubMed  Google Scholar 

  31. Roozafzoon, R., et al. (2015). Dental pulp stem cells differentiation into retinal ganglion-like cells in a three dimensional network. Biochemical and Biophysical Research Communications, 457(2), 154–160.

    CAS  PubMed  Google Scholar 

  32. Luo, L. (2018). Potential roles of dental pulp stem cells in neural regeneration and repair. Stem cells international, 2018.

  33. Mead, B., et al. (2013). Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Investigative Ophthalmology & Visual Science, 54(12), 7544–7556.

    CAS  Google Scholar 

  34. Mead, B., et al. (2014). Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: Comparison with human bone marrow and adipose-derived mesenchymal stem cells. PloS One, 9(10), e109305.

    PubMed  PubMed Central  Google Scholar 

  35. Mead, B., et al. (2016). Mesenchymal stromal cell–mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy, 18(4), 487–496.

    CAS  PubMed  Google Scholar 

  36. Mead, B., et al. (2017). Concise review: Dental pulp stem cells: A novel cell therapy for retinal and central nervous system repair. Stem Cells, 35(1), 61–67.

    CAS  PubMed  Google Scholar 

  37. Alsaeedi, H. A., et al. (2019). Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration. Journal of Photochemistry and Photobiology B: Biology, 198, 111561.

    CAS  PubMed  Google Scholar 

  38. Berry, M., et al. (2008). Regeneration of axons in the visual system. Restorative Neurology and Neuroscience, 26(2), 147–174.

    PubMed  Google Scholar 

  39. Kato, M., et al. (2020). Secreted factors from stem cells of human exfoliated deciduous teeth directly activate endothelial cells to promote all processes of angiogenesis. Cells, 9(11), 2385.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kunimatsu, R., et al. (2018). Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow–derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 501(1), 193–198.

    CAS  PubMed  Google Scholar 

  41. Wang, J., et al. (2010). Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells and Development, 19(9), 1375–1383.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rossi, D. J., et al. (2007). Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature, 447(7145), 725–729.

    CAS  PubMed  Google Scholar 

  43. Taghipour, Z., et al. (2012). Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells and Development, 21(10), 1794–1802.

    CAS  PubMed  Google Scholar 

  44. MacLaren, R. E., et al. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444(7116), 203–207.

    CAS  PubMed  Google Scholar 

  45. Ding, S. L. S., Kumar, S., & Mok, P. L. (2017). Cellular reparative mechanisms of mesenchymal stem cells for retinal diseases. International Journal of Molecular Sciences, 18(8), 1406.

    PubMed  PubMed Central  Google Scholar 

  46. Li, X. X., et al. (2019). Treatment with stem cells from human exfoliated deciduous teeth and their derived conditioned medium improves retinal visual function and delays the degeneration of photoreceptors. Stem Cells and Development, 28(22), 1514–1526.

    CAS  PubMed  Google Scholar 

  47. Inoue, Y., et al. (2007). Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Experimental eye Research, 85(2), 234–241.

    CAS  PubMed  Google Scholar 

  48. Tzameret, A., et al. (2015). Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem cell Research, 15(2), 387–394.

    CAS  PubMed  Google Scholar 

  49. El Moshy, S. (2020). Dental stem cell-derived secretome/conditioned medium: the future for regenerative therapeutic applications. Stem Cells International, 2020.

  50. Sonoyama, W., et al. (2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS One, 1(1), e79.

    PubMed  PubMed Central  Google Scholar 

  51. Sonoyama, W., et al. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. Journal of Endodontics, 34(2), 166–171.

    PubMed  PubMed Central  Google Scholar 

  52. Kang, J. (2019). Stem cells from the apical papilla: a promising source for stem cell-based therapy. BioMed Research International, 2019.

  53. Arthur, A., et al. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26(7), 1787–1795.

    CAS  PubMed  Google Scholar 

  54. Abe, S., Yamaguchi, S., & Amagasa, T. (2007). Multilineage cells from apical pulp of human tooth with immature apex. Oral Science International, 4(1), 45–58.

    Google Scholar 

  55. Kim, B. C., et al. (2017). Engineering three dimensional micro nerve tissue using postnatal stem cells from human dental apical papilla. Biotechnology and Bioengineering, 114(4), 903–914.

    CAS  PubMed  Google Scholar 

  56. Yu, S., et al. (2016). Profiling the secretome of human stem cells from dental apical papilla. Stem Cells and Development, 25(6), 499–508.

    CAS  PubMed  Google Scholar 

  57. Kumar, A., et al. (2017). Secretome cues modulate the neurogenic potential of bone marrow and dental stem cells. Molecular Neurobiology, 54(6), 4672–4682.

    CAS  PubMed  Google Scholar 

  58. Kolar, M. K., et al. (2017). The neurotrophic effects of different human dental mesenchymal stem cells. Scientific Reports, 7(1), 1–12.

    CAS  Google Scholar 

  59. De Almeida, J. F. A., et al. (2014). Stem cells of the apical papilla regulate trigeminal neurite outgrowth and targeting through a BDNF-dependent mechanism. Tissue Engineering Part A, 20(23–24), 3089–3100.

    PubMed  PubMed Central  Google Scholar 

  60. Karamali, F., et al. (2018). Stem cells from apical papilla promote differentiation of human pluripotent stem cells towards retinal cells. Differentiation, 101, 8–15.

    CAS  PubMed  Google Scholar 

  61. Hadady, H., et al. (2022). Potential neuroprotective effect of stem cells from apical papilla derived extracellular vesicles enriched by lab-on-chip approach during retinal degeneration. Cellular and Molecular Life Sciences, 79(7), 1–16.

    Google Scholar 

  62. Savoj, S., et al. (2022). Integrated stem cells from apical papilla in a 3D culture system improve human embryonic stem cell derived retinal organoid formation. Life Sciences, 291, 120273.

    CAS  PubMed  Google Scholar 

  63. Lin, N. H., Gronthos, S., & Bartold, P. (2008). Stem cells and periodontal regeneration. Australian Dental Journal, 53(2), 108–121.

    PubMed  Google Scholar 

  64. Huang, L., et al. (2013). Directing adult human periodontal ligament–derived stem cells to retinal fate. Investigative Ophthalmology & Visual Science, 54(6), 3965–3974.

    CAS  Google Scholar 

  65. Coura, G., et al. (2008). Human periodontal ligament: A niche of neural crest stem cells. Journal of Periodontal Research, 43(5), 531–536.

    CAS  PubMed  Google Scholar 

  66. Huang, C. C., et al. (2009). Plasticity of stem cells derived from adult periodontal ligament. Regenerative Medicine, 4(6), 809–821.

    PubMed  Google Scholar 

  67. Leon, S., et al. (2000). Lens injury stimulates axon regeneration in the mature rat optic nerve. Journal of Neuroscience, 20(12), 4615–4626.

    CAS  PubMed  Google Scholar 

  68. Yin, Y., et al. (2003). Macrophage-derived factors stimulate optic nerve regeneration. Journal of Neuroscience, 23(6), 2284–2293.

    CAS  PubMed  Google Scholar 

  69. Mohebichamkhorami, F., et al. (2022). Periodontal ligament stem cells as a promising therapeutic target for neural damage. Stem Cell Research & Therapy, 13(1), 1–14.

    Google Scholar 

  70. Yamaza, T., et al. (2010). Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem cell Research & Therapy, 1(1), 1–11.

    Google Scholar 

  71. Man, R. C. (2019). Insights into the Effects of the Dental Stem Cell Secretome on Nerve Regeneration: Towards Cell-Free Treatment. Stem cells international, 2019.

  72. Jolodar, S. K., Bigdeli, M., & Moghaddam, A. H. (2021). Hypericin ameliorates maternal separation-induced cognitive deficits and hippocampal inflammation in rats. Mini Reviews in Medicinal Chemistry, 21(9), 1144–1149.

    CAS  PubMed  Google Scholar 

  73. Cellot, G., et al. (2016). Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T + tf/J mice. Scientific Reports, 6(1), 1–13.

    Google Scholar 

  74. Mohebichamkhorami, F. Brain homogenate of rat model of Alzheimer’Disease modifies secretome of 3D cultured Periodontal Ligament Stem cells; A Potential Neuroregenerative Therapy.

  75. Rajan, T. S., et al. (2016). The secretome of periodontal ligament stem cells from MS patients protects against EAE. Scientific Reports, 6(1), 1–16.

    Google Scholar 

  76. Huang, L., et al. (2017). Adult human periodontal ligament-derived stem cells delay retinal degeneration and maintain retinal function in RCS rats. Stem cell Research & Therapy, 8(1), 1–14.

    Google Scholar 

  77. Lamba, D. A., et al. (2010). Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PloS One, 5(1), e8763.

    PubMed  PubMed Central  Google Scholar 

  78. Cen, L. P., et al. (2018). Human periodontal ligament-derived stem cells promote retinal ganglion cell survival and axon regeneration after optic nerve injury. Stem Cells, 36(6), 844–855.

    CAS  PubMed  Google Scholar 

  79. Cen, L. P., & Ng, T. K. (2018). Stem cell therapy for retinal ganglion cell degeneration. Neural Regeneration Research, 13(8), 1352.

    PubMed  PubMed Central  Google Scholar 

  80. Yam, G. H. F. (2015). Dental stem cells: A future asset of ocular cell therapy. Expert Reviews in Molecular Medicine, 17.

  81. Ansari, S., et al. (2017). Human periodontal ligament-and gingiva‐derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold. Advanced Healthcare Materials, 6(24), 1700670.

    Google Scholar 

  82. Fawzy El-Sayed, K. M., & Dörfer, C. E. (2016). Gingival mesenchymal stem/progenitor cells: a unique tissue engineering gem. Stem Cells International, 2016.

  83. Fawzy El-Sayed, K. M., Nguyen, N., & Dörfer, C. E. (2020). Ascorbic acid, inflammatory cytokines (IL-1β/TNF-α/IFN-γ), or their combination’s effect on stemness, proliferation, and differentiation of gingival mesenchymal stem/progenitor cells. Stem Cells International, 2020.

  84. Xu, X., et al. (2013). Gingivae contain neural-crest-and mesoderm-derived mesenchymal stem cells. Journal of Dental Research, 92(9), 825–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, R., et al. (2020). Role of gingival mesenchymal stem cell exosomes in macrophage polarization under inflammatory conditions. International Immunopharmacology, 81, 106030.

    CAS  PubMed  Google Scholar 

  86. Tang, L., et al. (2011). Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. Journal of Cellular Physiology, 226(3), 832–842.

    CAS  PubMed  Google Scholar 

  87. Ge, S., et al. (2012). Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: Potential use for clinical therapy. Regenerative Medicine, 7(6), 819–832.

    CAS  PubMed  Google Scholar 

  88. Zhang, Q., et al. (2010). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. The Journal of Immunology, 184(3), 1656–1656.

    CAS  Google Scholar 

  89. Zhang, Q., et al. (2017). Neural progenitor-like cells induced from human gingiva‐derived mesenchymal stem cells regulate myelination of Schwann cells in rat sciatic nerve regeneration. Stem Cells Translational Medicine, 6(2), 458–470.

    CAS  PubMed  Google Scholar 

  90. Zhang, Q., et al. (2018). 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Scientific Reports, 8(1), 1–11.

    Google Scholar 

  91. Rajan, T. S., et al. (2017). Conditioned medium from human gingival mesenchymal stem cells protects motor-neuron-like NSC-34 cells against scratch-injury-induced cell death. International Journal of Immunopathology and Pharmacology, 30(4), 383–394.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Silvestro, S., et al. (2020). Extracellular vesicles derived from human gingival mesenchymal stem cells: A transcriptomic analysis. Genes, 11(2), 118.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hajizadeh Moghaddam, A., et al. (2020). Hesperetin nanoparticles attenuate anxiogenic-like behavior and cerebral oxidative stress through the upregulation of antioxidant enzyme expression in experimental dementia of Alzheimer’s type. Neurological Research, 42(6), 477–486.

    CAS  PubMed  Google Scholar 

  94. Hajjar, D. P., & Gotto, A. M. Jr. (2013). Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases. The American Journal of Pathology, 182(5), 1474–1481.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Baradaran, S. (2020). Protective effects of curcumin and its nano-phytosome on carrageenan-induced inflammation in mice model: Behavioral and biochemical responses. Journal of Inflammation Research, : p. 45–51.

  96. Rao, F. (2019). Exosomes from human gingiva-derived mesenchymal stem cells combined with biodegradable chitin conduits promote rat sciatic nerve regeneration. Stem cells international, 2019.

  97. Lai, R. C., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem cell Research, 4(3), 214–222.

    CAS  PubMed  Google Scholar 

  98. Yu, B., et al. (2016). Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Scientific Reports, 6(1), 1–12.

    CAS  Google Scholar 

  99. Mead, B., Amaral, J., & Tomarev, S. (2018). Mesenchymal stem cell–derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma. Investigative Ophthalmology & Visual Science, 59(2), 702–714.

    CAS  Google Scholar 

  100. Beck, H. C., et al. (2011). Comparison of neurosphere-like cell clusters derived from dental follicle precursor cells and retinal Müller cells. Neurochemical Research, 36(11), 2002–2007.

    CAS  PubMed  Google Scholar 

  101. Zhang, J., et al. (2019). Dental follicle stem cells: Tissue engineering and immunomodulation. Stem Cells and Development, 28(15), 986–994.

    PubMed  Google Scholar 

  102. Honda, M. J., et al. (2010). Dental follicle stem cells and tissue engineering. Journal of oral Science, 52(4), 541–552.

    PubMed  Google Scholar 

  103. Hong, H., et al. (2020). Dental follicle stem cells rescue the regenerative capacity of inflamed rat dental pulp through a paracrine pathway. Stem Cell Research & Therapy, 11(1), 1–16.

    Google Scholar 

  104. Zhou, T. (2019). Dental follicle cells: roles in development and beyond. Stem cells international, 2019.

  105. Ernst, W., et al. (2009). Comparison of murine dental follicle precursor and retinal progenitor cells after neural differentiation in vitro. Cell Biology International, 33(7), 758–764.

    CAS  PubMed  Google Scholar 

  106. Kanao, S. (2017). Capacity of human dental follicle cells to differentiate into neural cells in vitro. Stem Cells International, 2017.

  107. Lima, R. L., et al. (2017). Human dental follicle cells express embryonic, mesenchymal and neural stem cells markers. Archives of oral Biology, 73, 121–128.

    CAS  PubMed  Google Scholar 

  108. Völlner, F., et al. (2009). A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation, 77(5), 433–441.

    PubMed  Google Scholar 

  109. Yu, J. (2023). Emerging strategies of engineering retinal organoids and organoid-on-a-chip in modeling intraocular drug delivery: Current progress and future perspectives. Advanced Drug Delivery Reviews, : p. 114842.

  110. Zhao, Z. (2022). Organoids Nature Reviews Methods Primers, 2(1): 94.

    CAS  PubMed  Google Scholar 

  111. Li, X., et al. (2021). Retinal organoids: Cultivation, differentiation, and transplantation. Frontiers in Cellular Neuroscience, 15, 638439.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fathi, M., Ross, C. T., & Hosseinzadeh, Z. (2021). Functional 3-dimensional retinal organoids: Technological progress and existing challenges. Frontiers in Neuroscience, 15, 668857.

    PubMed  PubMed Central  Google Scholar 

  113. McLelland, B. T., et al. (2018). Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Investigative Ophthalmology & Visual Science, 59(6), 2586–2603.

    CAS  Google Scholar 

  114. Gong, J., et al. (2023). A controllable perfusion microfluidic chip for facilitating the development of retinal ganglion cells in human retinal organoids. Lab on a Chip.

  115. Yang, C., et al. (2017). Potential of human dental stem cells in repairing the complete transection of rat spinal cord. Journal of Neural Engineering, 14(2), 026005.

    PubMed  Google Scholar 

  116. Holan, V., Palacka, K., & Hermankova, B. (2021). Mesenchymal stem cell-based therapy for retinal degenerative diseases: Experimental models and clinical trials. Cells, 10(3), 588.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kahraman, N. S., & Oner, A. (2020). Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: A 6-month follow-up results of a phase 3 trial. International Journal of Ophthalmology, 13(9), 1423.

    PubMed  PubMed Central  Google Scholar 

  118. Özmert, E., & Arslan, U. (2020). Management of retinitis pigmentosa by Wharton’s jelly-derived mesenchymal stem cells: Prospective analysis of 1-year results. Stem cell Research & Therapy, 11(1), 1–17.

    Google Scholar 

Download references

Acknowledgements

We appreciate all of the researchers in this field of study that we used their research to better understand the concept of this paper.

Funding

No grants, funds, or other financial support were received.

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed to the design of the work and drafting of the manuscript equally and all authors read and accepted the final manuscript.

Corresponding authors

Correspondence to Hakimeh Zali or Ebrahim Mostafavi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebichamkhorami, F., Niknam, Z., Zali, H. et al. Therapeutic Potential of Oral-Derived Mesenchymal Stem Cells in Retinal Repair. Stem Cell Rev and Rep 19, 2709–2723 (2023). https://doi.org/10.1007/s12015-023-10626-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10626-x

Keywords

Navigation