Skip to main content
Log in

Single-Cell RNA-seq Analysis of a Human Embryonic Stem Cell to Endothelial Cell System Based on Transcription Factor Overexpression

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Human embryonic stem cell (hESC)-derived endothelial cells (ECs) possess therapeutic potential in many diseases. Cytokine supplementation induction and transcription factor overexpression have become two mainstream methods of hESC-EC induction. Single-cell RNA-seq technology has been widely used to analyse dynamic processes during hESC-EC induction and components of induced endothelial cells. However, studies that used single-cell RNA-seq are mainly based on cytokine supplementation methods. In this study, we used a high-efficiency human embryonic stem cell-endothelial cell line (hESC-EC) called the “FLI1-PKC system” as a research model and employed single-cell RNA sequencing (scRNA-seq) to investigate the transcriptional landscape and cellular dynamics.

Methods

The high-efficiency hESC-EC induction (FLI1-PKC) system was established in our previous study. We applied single-cell RNA sequencing (scRNA-seq) of the differentiated cells at different time points and investigated the gene expression profiles.

Results

The FLI1-PKC induction system can directionally differentiate hESCs into mature endothelial cells with all the requisite functions. Unlike other hES-EC induction protocols, the FLI1-PKC method follows a different induction route; nonetheless, the transcriptome of induced endothelial cells (iECs) remains the same. The elevated number of activated transcription factors may explain why the FLI1-PKC system is more effective than other hES-EC protocols.

Conclusion

Our study has presented a single-cell transcriptional overview of a high-efficiency hESC-EC induction system, which can be used as a model and reference for further improvement in other hESC induction systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

hESC :

Human embryonic cells

ECs :

Endothelial cells

iEC :

Induced endothelial cells

TF :

Transcriptional factor

UMAP :

Uniform Manifold Approximation and Projection

References

  1. Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell, 27(4), 523–531.

    Article  CAS  PubMed  Google Scholar 

  2. Balboa, D., et al. (2022). Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nature Biotechnology, 40(7), 1042–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, M., et al. (2020). A hepatocyte differentiation model reveals two subtypes of liver cancer with different oncofetal properties and therapeutic targets. Proceedings of the National Academy of Sciences of the United States of America, 117(11), 6103–6113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patsch, C., et al. (2015). Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 17(8), 994–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Gelder, R. N., et al. (2022). Regenerative and restorative medicine for eye disease. Nature Medicine, 28(6), 1149–1156.

    Article  PubMed  Google Scholar 

  6. Lancaster, M., et al. (2022). Anniversary reflections: Inspiring discoveries and the future of the field. Cell Stem Cell, 29(6), 879–881.

    Article  CAS  PubMed  Google Scholar 

  7. Bibli, S. I., et al. (2021). Mapping the endothelial cell s-sulfhydrome highlights the crucial role of integrin sulfhydration in vascular function. Circulation, 143(9), 935–948.

    Article  CAS  PubMed  Google Scholar 

  8. Colliva, A., et al. (2020). Endothelial cell-cardiomyocyte crosstalk in heart development and disease. Journal of Physiology, 598(14), 2923–2939.

    Article  CAS  PubMed  Google Scholar 

  9. Liang, J., et al. (2017). Inhibition of microRNA-495 enhances therapeutic angiogenesis of human induced pluripotent stem cells. Stem Cells, 35(2), 337–350.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, F., et al. (2017). Optimizing mesoderm progenitor selection and three-dimensional microniche culture allows highly efficient endothelial differentiation and ischemic tissue repair from human pluripotent stem cells. Stem Cell Research & Therapy, 8(1), 6.

    Article  Google Scholar 

  11. Gao, L., et al. (2017). Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circulation Research, 120(8), 1318–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Du, C., et al. (2014). Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials, 35(23), 6006–6014.

    Article  CAS  PubMed  Google Scholar 

  13. Abaci, H. E., et al. (2016). Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Advanced Healthcare Materials, 5(14), 1800–1807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, N. F., et al. (2010). Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(5), 984–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Umeda, K., et al. (2006). Identification and characterization of hemoangiogenic progenitors during cynomolgus monkey embryonic stem cell differentiation. Stem Cells, 24(5), 1348–1358.

    Article  CAS  PubMed  Google Scholar 

  16. Rufaihah, A. J., et al. (2011). Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(11), e72–e79.

    Article  CAS  PubMed  Google Scholar 

  17. Harding, A., et al. (2017). Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells, 35(4), 909–919.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, H., et al. (2018). FLI1 and PKC co-activation promote highly efficient differentiation of human embryonic stem cells into endothelial-like cells. Cell Death & Disease, 9(2), 131.

    Article  Google Scholar 

  19. Spevak, C. C., et al. (2020). Hematopoietic stem and progenitor cells exhibit stage-specific translational programs via mTOR- and CDK1-dependent mechanisms. Cell Stem Cell, 26(5), 755-765.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stark, R., Grzelak, M., & Hadfield, J. (2019). RNA sequencing: The teenage years. Nature Reviews Genetics, 20(11), 631–656.

    Article  CAS  PubMed  Google Scholar 

  21. Ranzoni, A. M., et al. (2021). Integrative single-cell RNA-Seq and ATAC-Seq analysis of human developmental hematopoiesis. Cell Stem Cell, 28(3), 472-487.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCracken, I. R., et al. (2020). Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing. European Heart Journal, 41(9), 1024–1036.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, M., et al. (2018). Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell, 23(4), 599-614.e4.

    Article  CAS  PubMed  Google Scholar 

  24. Lang, C., et al. (2019). Single-cell sequencing of iPSC-dopamine neurons reconstructs disease progression and identifies HDAC4 as a regulator of Parkinson cell phenotypes. Cell Stem Cell, 24(1), 93-106.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, T. D., & Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics, 26(7), 873–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lun, A. T., Bach, K., & Marioni, J. C. (2016). Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biology, 17, 75.

    Article  PubMed  Google Scholar 

  27. MacAskill, M. G., et al. (2018). Robust revascularization in models of limb ischemia using a clinically translatable human stem cell-derived endothelial cell product. Molecular Therapy, 26(7), 1669–1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, H., et al. (2020). VEGF promotes endothelial cell differentiation from human embryonic stem cells mainly through PKC-ɛ/η pathway. Stem Cells and Development, 29(2), 90–99.

    Article  CAS  PubMed  Google Scholar 

  29. Lambert, S. A., et al. (2018). The human transcription factors. Cell, 172(4), 650–665.

    Article  CAS  PubMed  Google Scholar 

  30. Han, M., & Zhou, B. (2020). Sox17 and coronary arteriogenesis in development. Circulation Research, 127(11), 1381–1383.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Y., et al. (2022). Endothelial MEKK3-KLF2/4 signaling integrates inflammatory and hemodynamic signals during definitive hematopoiesis. Blood, 139(19), 2942–2957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kong, Y., et al. (2020). circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Molecular Cancer, 19(1), 82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bucher, K., et al. (2000). The T cell oncogene Tal2 is necessary for normal development of the mouse brain. Developmental Biology, 227(2), 533–544.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, R., Guo, S., & Yang, L. (2023). Tal2 is required for generation of GABAergic neurons in the zebrafish midbrain. Developmental Dynamics, 252(2), 263–275.

  35. Mori, S., et al. (1999). The leukemic oncogene tal-2 is expressed in the developing mouse brain. Brain Research Molecular Brain Research, 64(2), 199–210.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, L., et al. (2021). 3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. Nature Communications, 12(1), 3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murthi, P., et al. (2008). Novel homeobox genes are differentially expressed in placental microvascular endothelial cells compared with macrovascular cells. Placenta, 29(7), 624–630.

    Article  CAS  PubMed  Google Scholar 

  38. Fish, J. E., et al. (2017). Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network. Development, 144(13), 2428–2444.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Testori, J., et al. (2011). The VEGF-regulated transcription factor HLX controls the expression of guidance cues and negatively regulates sprouting of endothelial cells. Blood, 117(9), 2735–2744.

    Article  CAS  PubMed  Google Scholar 

  40. Kawahara, M., et al. (2012). H2.0-like homeobox regulates early hematopoiesis and promotes acute myeloid leukemia. Cancer Cell, 22(2), 194–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonifer, C., et al. (2017). Runx1 structure and function in blood cell development. Advances in Experimental Medicine and Biology, 962, 65–81.

    Article  CAS  PubMed  Google Scholar 

  42. Collin, M., Dickinson, R., & Bigley, V. (2015). Haematopoietic and immune defects associated with GATA2 mutation. British Journal of Haematology, 169(2), 173–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daly, M. E. (2017). Transcription factor defects causing platelet disorders. Blood Reviews, 31(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  44. Spitz, F., & Furlong, E. E. (2012). Transcription factors: From enhancer binding to developmental control. Nature Reviews Genetics, 13(9), 613–626.

    Article  CAS  PubMed  Google Scholar 

  45. Thoms, J. A. I., et al. (2021). Disruption of a GATA2-TAL1-ERG regulatory circuit promotes erythroid transition in healthy and leukemic stem cells. Blood, 138(16), 1441–1455.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou, G., et al. (2015). Zbtb20 regulates the terminal differentiation of hypertrophic chondrocytes via repression of Sox9. Development, 142(2), 385–393.

    Article  CAS  PubMed  Google Scholar 

  47. Cioffi, S., et al. (2014). Tbx1 regulates brain vascularization. Human Molecular Genetics, 23(1), 78–89.

    Article  CAS  PubMed  Google Scholar 

  48. Ji, Z., et al. (2021). Oct4-dependent FoxC1 activation improves the survival and neovascularization of mesenchymal stem cells under myocardial ischemia. Stem Cell Research & Therapy, 12(1), 483.

    Article  CAS  Google Scholar 

  49. Cooley, B. C., et al. (2014). TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Science Translational Medicine, 6(227), 227ra34.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wernig, M., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.

    Article  CAS  PubMed  Google Scholar 

  51. Hochedlinger, K. (2010). From MYOD1 to iPS cells. Nature Reviews Molecular Cell Biology, 11(12), 817.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Genergy Bio-Technology (Shanghai) Co. for providing sequencing service and helping with data analyses.

Funding

This research was supported by grants from the National Natural Science Foundation of China (Grant number: 81873478) and Hunan Provincial Grant for Innovative Province Construction (Grant number: 2019SK4012). The funding body played no role in the design of the study and collection, analysis, and interpretation of data.

Author information

Authors and Affiliations

Authors

Contributions

LH designed the study and revised the manuscript. XWX performed most of the experiments. HZ build the FLI1-PKC hES-EC induction system and provide technical support for the experiments. GL revised the manuscript. JRC analyzed the single-cell sequencing data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liang Hu.

Ethics declarations

Ethics Approval and Consent to Participate

(1) Title of the approved project: Stem cell bank of the institution of National Engineering and Research Center of Human Stem Cell; (2) Name of the institutional approval committee or unit: ethical committee of Reproductive and Genetic Hospital of CITIC-Xiangya; (3) Approval number: LL-SC-2022–031; (4) Date of approval: 8 October 2022.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Chen, J., Zhao, H. et al. Single-Cell RNA-seq Analysis of a Human Embryonic Stem Cell to Endothelial Cell System Based on Transcription Factor Overexpression. Stem Cell Rev and Rep 19, 2497–2509 (2023). https://doi.org/10.1007/s12015-023-10598-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10598-y

Keywords

Navigation