Skip to main content

Advertisement

Log in

Regenerative Potential of Human Breast Milk: A Natural Reservoir of Nutrients, Bioactive Components and Stem cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Human milk is a complex fluid that contains carbohydrates, lipids, proteins, and other bioactive molecules (immunoglobulins, lactoferrin, human milk oligosaccharides, lysozyme, leukocytes, cytokines, hormones, and microbiome) which provide nutritional, immunological, and developmental benefits to the infant. In addition to their involvement in the development, these bioactive compounds have a key role in anti-oncogenicity, neuro-cognitive development, cellular communication, and differentiation. As a result of technological advancements, it has been discovered that human breast milk contains cells that display many of the characteristics of stem cells with multilineage differentiation potentials. Do these cells have any specific properties or roles? Research efforts on breast milk cells have been mainly focused on leukocytes based on their immunological perspective in the early postpartum period. This review summarizes the nutritional components in human milk, i.e., the macro and micronutrients required for the growth and development of infants. Further, it discusses the research work reported concerning the purification, propagation, and differentiation of breast milk progenitor cells and highlights the advancements made in this newly emerging field of stem cell biology and regenerative medicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Jenness, R. (1979). The composition of human milk. Seminars in Perinatology, 3(3), 225–239.

    CAS  PubMed  Google Scholar 

  2. Kaingade, P., Somasundaram, I., Nikam, A., Behera, P., Kulkarni, S., & Patel, J. (2017). Breast milk cell components and its beneficial effects on neonates: Need for breast milk cell banking. Journal of Pediatric and Neonatal Individualized Medicine (JPNIM), 6(1), e060115–e060115. https://doi.org/10.7363/060115

    Article  Google Scholar 

  3. Hassiotou, F., & Geddes, D. (2013). Anatomy of the human mammary gland: Current status of knowledge. Clinical Anatomy (New York, N.Y.), 26(1), 29–48. https://doi.org/10.1002/ca.22165

  4. Key, T. J., Verkasalo, P. K., & Banks, E. (2001). Epidemiology of breast cancer. The Lancet. Oncology, 2(3), 133–140. https://doi.org/10.1016/S1470-2045(00)00254-0

    Article  CAS  PubMed  Google Scholar 

  5. Patki, S., Kadam, S., Chandra, V., & Bhonde, R. (2010). Human breast milk is a rich source of multipotent mesenchymal stem cells. Human Cell, 23(2), 35–40. https://doi.org/10.1111/j.1749-0774.2010.00083.x

    Article  CAS  PubMed  Google Scholar 

  6. World Health Organization. Division of Diarrhoeal and Acute Respiratory Disease Control, & Fund (UNICEF), U. N. C. (1993). Breastfeeding counselling : a training course (No. WHO/CDR/93.3–6). World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/63428. Accessed 19 May 2009

  7. Sarhadi, N. S., Shaw Dunn, J., Lee, F. D., & Soutar, D. S. (1996). An anatomical study of the nerve supply of the breast, including the nipple and areola. British Journal of Plastic Surgery, 49(3), 156–164. https://doi.org/10.1016/s0007-1226(96)90218-0

    Article  CAS  PubMed  Google Scholar 

  8. Khan, Y. S., & Sajjad, H. (2022). Anatomy, Thorax, Mammary Gland. In StatPearls. Treasure Island (FL): StatPearls Publishing. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK547666/. Accessed 25 July 2022

  9. Anderson, S. M., Rudolph, M. C., McManaman, J. L., & Neville, M. C. (2007). Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis! Breast Cancer Research, 9(1), 204. https://doi.org/10.1186/bcr1653.

  10. Pillay, J., & Davis, T. J. (2022). Physiology, Lactation. In StatPearls. Treasure Island (FL): StatPearls Publishing. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK499981/. Accessed 18 July 2022

  11. Neville, M. C., Morton, J., & Umemura, S. (2001). Lactogenesis. The transition from pregnancy to lactation. Pediatric Clinics of North America, 48(1), 35–52. https://doi.org/10.1016/s0031-3955(05)70284-4.

  12. Neville, M. C., & Morton, J. (2001). Physiology and Endocrine Changes Underlying Human Lactogenesis II. The Journal of Nutrition, 131(11), 3005S-3008S. https://doi.org/10.1093/jn/131.11.3005S

    Article  CAS  PubMed  Google Scholar 

  13. Anderson, E., Clarke, R. B., & Howell, A. (1998). Estrogen responsiveness and control of normal human breast proliferation. Journal of Mammary Gland Biology and Neoplasia, 3(1), 23–35. https://doi.org/10.1023/a:1018718117113

    Article  CAS  PubMed  Google Scholar 

  14. Norman, A. W., & Henry, H. L. (2015). Chapter 14 - Hormones of Pregnancy, Parturition and Lactation. In A. W. Norman & H. L. Henry (Eds.), Hormones (Third Edition) (pp. 297–320). Academic Press. https://doi.org/10.1016/B978-0-08-091906-5.00014-8.

  15. The physiological basis of breastfeeding. (2009). Infant and Young Child Feeding: Model Chapter for Textbooks for Medical Students and Allied Health Professionals. World Health Organization. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK148970/.

  16. Ballard, O., & Morrow, A. L. (2013). Human Milk Composition: Nutrients and Bioactive Factors. Pediatric Clinics of North America, 60(1), 49–74. https://doi.org/10.1016/j.pcl.2012.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Valentine, C. J., & Wagner, C. L. (2013). Nutritional Management of the Breastfeeding Dyad. Pediatric Clinics, 60(1), 261–274. https://doi.org/10.1016/j.pcl.2012.10.008

    Article  PubMed  Google Scholar 

  18. Eriksen, K. G., Christensen, S. H., Lind, M. V., & Michaelsen, K. F. (2018). Human milk composition and infant growth. Current Opinion in Clinical Nutrition and Metabolic Care, 21(3), 200–206. https://doi.org/10.1097/MCO.0000000000000466

  19. Mosca, F., & Giannì, M. L. (2017). Human milk: Composition and health benefits. La Pediatria Medica E Chirurgica: Medical and Surgical Pediatrics, 39(2), 155. https://doi.org/10.4081/pmc.2017.155

    Article  PubMed  Google Scholar 

  20. Perrella, S., Gridneva, Z., Lai, C. T., Stinson, L., George, A., Bilston-John, S., & Geddes, D. (2021). Human milk composition promotes optimal infant growth, development and health. Seminars in Perinatology, 45(2), 151380. https://doi.org/10.1016/j.semperi.2020.151380.

  21. Maas, Y. G. H., Gerritsen, J., Hart, A. A. M., Hadders-Algra, M., Ruijter, J. M., Tamminga, P., … Spekreijse, H. (1998). Development of macronutrient composition of very preterm human milk. British Journal of Nutrition, 80(1), 35–40. https://doi.org/10.1017/S0007114598001743.

  22. Lönnerdal, B. (2004). Human milk proteins: Key components for the biological activity of human milk. Advances in Experimental Medicine and Biology, 554, 11–25.

    Article  PubMed  Google Scholar 

  23. Molinari, C. E., Casadio, Y. S., Hartmann, B. T., Livk, A., Bringans, S., Arthur, P. G., & Hartmann, P. E. (2012). Proteome mapping of human skim milk proteins in term and preterm milk. Journal of Proteome Research, 11(3), 1696–1714. https://doi.org/10.1021/pr2008797

    Article  CAS  PubMed  Google Scholar 

  24. Liao, Y., Alvarado, R., Phinney, B., & Lönnerdal, B. (2011). Proteomic characterization of human milk whey proteins during a twelve-month lactation period. Journal of Proteome Research, 10(4), 1746–1754. https://doi.org/10.1021/pr101028k

    Article  CAS  PubMed  Google Scholar 

  25. Lönnerdal, B. (2003). Nutritional and physiologic significance of human milk proteins. The American Journal of Clinical Nutrition, 77(6), 1537S-1543S. https://doi.org/10.1093/ajcn/77.6.1537S

    Article  PubMed  Google Scholar 

  26. Meurant: Handbook of milk composition - Google Scholar. (2022, June 22). Retrieved June 22, 2022, from https://scholar.google.com/scholar_lookup?hl=en&publication_year=1995&pages=115-221&author=A.+Prenticeauthor=R.G.+Jensens&title=Handbook+of+milk+composition.

  27. Liao, Y., Weber, D., Xu, W., Durbin-Johnson, B. P., Phinney, B. S., & Lönnerdal, B. (2017). Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation. Journal of Proteome Research, 16(11), 4113–4121. https://doi.org/10.1021/acs.jproteome.7b00486

    Article  CAS  PubMed  Google Scholar 

  28. Grote, V., Verduci, E., Scaglioni, S., Vecchi, F., Contarini, G., Giovannini, M., … Agostoni, C. (2016). Breast milk composition and infant nutrient intakes during the first 12 months of life. European Journal of Clinical Nutrition, 70(2), 250–256. https://doi.org/10.1038/ejcn.2015.162.

  29. Macronutrient and energy contents of human milk fractions during the first six months of lactation - PubMed. (2022, July 28). Retrieved July 28, 2022, from https://pubmed.ncbi.nlm.nih.gov/16203669/.

  30. Presence of Leptin in Colostrum and/or Breast Milk from Lactating Mothers: A Potential Role in the Regulation of Neonatal Food Intake | The Journal of Clinical Endocrinology & Metabolism | Oxford Academic. (2022, August 23). Retrieved August 23, 2022, from https://academic.oup.com/jcem/article/82/12/4270/2866121.

  31. Guesnet, P., & Alessandri, J.-M. (2011). Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) – Implications for dietary recommendations. Biochimie, 93(1), 7–12. https://doi.org/10.1016/j.biochi.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  32. Kashyap, S., Towers, H. M., Sahni, R., Ohira-Kist, K., Abildskov, K., & Schulze, K. F. (2001). Effects of quality of energy on substrate oxidation in enterally fed, low-birth-weight infants. American Journal of Clinical Nutrition, 74(3), 374–380. https://doi.org/10.1093/ajcn/74.3.374

    Article  CAS  PubMed  Google Scholar 

  33. Kunz, C., Rodriguez-Palmero, M., Koletzko, B., & Jensen, R. (1999). Nutritional and biochemical properties of human milk, Part I: General aspects, proteins, and carbohydrates. Clinics in Perinatology, 26(2), 307–333.

    Article  CAS  PubMed  Google Scholar 

  34. Hester, S. N., Hustead, D. S., Mackey, A. D., Singhal, A., & Marriage, B. J. (2012). Is the macronutrient intake of formula-fed infants greater than breast-fed infants in early infancy? Journal of Nutrition and Metabolism, 2012, 891201. https://doi.org/10.1155/2012/891201.

  35. Martin, C. R., Ling, P.-R., & Blackburn, G. L. (2016). Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients, 8(5), 279. https://doi.org/10.3390/nu8050279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Donovan, S. M., & Comstock, S. S. (2016). Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Annals of Nutrition & Metabolism, 69(Suppl 2), 42–51. https://doi.org/10.1159/000452818

    Article  Google Scholar 

  37. Harmsen, H. J., Wildeboer-Veloo, A. C., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G., & Welling, G. W. (2000). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. Journal of Pediatric Gastroenterology and Nutrition, 30(1), 61–67. https://doi.org/10.1097/00005176-200001000-00019

    Article  CAS  PubMed  Google Scholar 

  38. Plaza-Díaz, J., Fontana, L., & Gil, A. (2018). Human Milk Oligosaccharides and Immune System Development. Nutrients, 10(8), E1038. https://doi.org/10.3390/nu10081038

    Article  CAS  Google Scholar 

  39. Greer, F. R. (2001). Do breastfed infants need supplemental vitamins? Pediatric Clinics of North America, 48(2), 415–423. https://doi.org/10.1016/s0031-3955(08)70034-8

    Article  CAS  PubMed  Google Scholar 

  40. Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., de Onis, M., Ezzati, M., … Rivera, J. (2008). Maternal and child undernutrition: global and regional exposures and health consequences. The Lancet, 371(9608), 243–260. https://doi.org/10.1016/S0140-6736(07)61690-0.

  41. Choi, Y. K., Kim, J.-M., Lee, J.-E., Cho, M. S., Kang, B. S., Choi, H., & Kim, Y. (2016). Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers. Clinical Nutrition Research, 5(1), 15–25. https://doi.org/10.7762/cnr.2016.5.1.15

    Article  PubMed  PubMed Central  Google Scholar 

  42. Allen, L. H. (2012). B vitamins in breast milk: relative importance of maternal status and intake, and effects on infant status and function. Advances in Nutrition (Bethesda, Md.), 3(3), 362–369. https://doi.org/10.3945/an.111.001172.

  43. Dawodu, A., Zalla, L., Woo, J. G., Herbers, P. M., Davidson, B. S., Heubi, J. E., & Morrow, A. L. (2014). Heightened attention to supplementation is needed to improve the vitamin D status of breastfeeding mothers and infants when sunshine exposure is restricted. Maternal & Child Nutrition, 10(3), 383–397. https://doi.org/10.1111/j.1740-8709.2012.00422.x

    Article  Google Scholar 

  44. Guideline: daily iron supplementation in infants and children. (2022, August 22). Retrieved August 22, 2022, from https://www.who.int/publications-detail-redirect/9789241549523.

  45. Update on zinc deficiency and excess in clinical pediatric practice - PubMed. (2022, August 22). Retrieved August 22, 2022, from https://pubmed.ncbi.nlm.nih.gov/23689110/.

  46. Minerals and Trace Elements in Human Breast Milk Are Associated with Guatemalan Infant Anthropometric Outcomes within the First 6 Months - PubMed. (2022, August 22). Retrieved August 22, 2022, from https://pubmed.ncbi.nlm.nih.gov/27558578/.

  47. Morrow, A. L., Ruiz-Palacios, G. M., Jiang, X., & Newburg, D. S. (2005). Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. The Journal of Nutrition, 135(5), 1304–1307. https://doi.org/10.1093/jn/135.5.1304

    Article  CAS  PubMed  Google Scholar 

  48. Newburg, D. S., Ruiz-Palacios, G. M., & Morrow, A. L. (2005). Human milk glycans protect infants against enteric pathogens. Annual Review of Nutrition, 25, 37–58. https://doi.org/10.1146/annurev.nutr.25.050304.092553

    Article  CAS  PubMed  Google Scholar 

  49. Hunt, K. M., Foster, J. A., Forney, L. J., Schütte, U. M. E., Beck, D. L., Abdo, Z., … McGuire, M. A. (2011). Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLOS ONE, 6(6), e21313. https://doi.org/10.1371/journal.pone.0021313.

  50. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery - PubMed. (2022, August 22). Retrieved August 22, 2022, from https://pubmed.ncbi.nlm.nih.gov/22836031/.

  51. Shelby, R. D., Cromeens, B., Rager, T. M., & Besner, G. E. (2019). Influence of Growth Factors on the Development of NEC. Clinics in Perinatology, 46(1), 51–64. https://doi.org/10.1016/j.clp.2018.10.005

    Article  PubMed  Google Scholar 

  52. Lawrence, R. M., & Pane, C. A. (2007). Human breast milk: Current concepts of immunology and infectious diseases. Current Problems in Pediatric and Adolescent Health Care, 37(1), 7–36. https://doi.org/10.1016/j.cppeds.2006.10.002

    Article  PubMed  Google Scholar 

  53. Loui, A., Eilers, E., Strauss, E., Pohl-Schickinger, A., Obladen, M., & Koehne, P. (2012). Vascular Endothelial Growth Factor (VEGF) and soluble VEGF receptor 1 (sFlt-1) levels in early and mature human milk from mothers of preterm versus term infants. Journal of Human Lactation: Official Journal of International Lactation Consultant Association, 28(4), 522–528. https://doi.org/10.1177/0890334412447686

    Article  PubMed  Google Scholar 

  54. Levels of Growth Factors and IgA in the Colostrum of Women from Burundi and Italy - PMC. (2022, August 23). Retrieved August 23, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164593/.

  55. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity - PMC. (2022, August 23). Retrieved August 23, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628333/.

  56. Aydin, S., Aydin, S., Ozkan, Y., & Kumru, S. (2006). Ghrelin is present in human colostrum, transitional and mature milk. Peptides, 27(4), 878–882. https://doi.org/10.1016/j.peptides.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  57. Baxter, R. C., Zaltsman, Z., & Turtle, J. R. (1984). Immunoreactive somatomedin-C/insulin-like growth factor I and its binding protein in human milk. The Journal of Clinical Endocrinology and Metabolism, 58(6), 955–959. https://doi.org/10.1210/jcem-58-6-955

    Article  CAS  PubMed  Google Scholar 

  58. Martin, L. J., Woo, J. G., Geraghty, S. R., Altaye, M., Davidson, B. S., Banach, W., … Morrow, A. L. (2006). Adiponectin is present in human milk and is associated with maternal factors. The American Journal of Clinical Nutrition, 83(5), 1106–1111. https://doi.org/10.1093/ajcn/83.5.1106

  59. Ilcol, Y. O., Hizli, Z. B., & Eroz, E. (2008). Resistin is present in human breast milk and it correlates with maternal hormonal status and serum level of C-reactive protein. Clinical Chemistry and Laboratory Medicine, 46(1), 118–124. https://doi.org/10.1515/CCLM.2008.019

    Article  CAS  PubMed  Google Scholar 

  60. Update on breast milk hormones: leptin, ghrelin and adiponectin - PubMed. (2022, August 23). Retrieved August 23, 2022, from https://pubmed.ncbi.nlm.nih.gov/17950501/.

  61. Bode, L., McGuire, M., Rodriguez, J. M., Geddes, D. T., Hassiotou, F., Hartmann, P. E., & McGuire, M. K. (2014). It’s Alive: Microbes and Cells in Human Milk and Their Potential Benefits to Mother and Infant123. Advances in Nutrition, 5(5), 571–573. https://doi.org/10.3945/an.114.006643

    Article  PubMed  PubMed Central  Google Scholar 

  62. César, J. A., Victora, C. G., Barros, F. C., Santos, I. S., & Flores, J. A. (1999). Impact of breast feeding on admission for pneumonia during postneonatal period in Brazil: Nested case-control study. BMJ (Clinical Research Ed.), 318(7194), 1316–1320. https://doi.org/10.1136/bmj.318.7194.1316

    Article  PubMed  Google Scholar 

  63. Duijts, L., Ramadhani, M. K., & Moll, H. A. (2009). Breastfeeding protects against infectious diseases during infancy in industrialized countries. A systematic review. Maternal & Child Nutrition, 5(3), 199–210. https://doi.org/10.1111/j.1740-8709.2008.00176.x.

  64. Duncan, B., Ey, J., Holberg, C. J., Wright, A. L., Martinez, F. D., & Taussig, L. M. (1993). Exclusive breast-feeding for at least 4 months protects against otitis media. Pediatrics, 91(5), 867–872.

    Article  CAS  PubMed  Google Scholar 

  65. Oddy, W. H., Holt, P. G., Sly, P. D., Read, A. W., Landau, L. I., Stanley, F. J., … Burton, P. R. (1999). Association between breast feeding and asthma in 6 year old children: findings of a prospective birth cohort study. BMJ, 319(7213), 815–819. https://doi.org/10.1136/bmj.319.7213.815.

  66. Saarinen, U. M. (1982). Prolonged breast feeding as prophylaxis for recurrent otitis media. Acta Paediatrica Scandinavica, 71(4), 567–571. https://doi.org/10.1111/j.1651-2227.1982.tb09476.x

    Article  CAS  PubMed  Google Scholar 

  67. Wright, A. L., Holberg, C. J., Martinez, F. D., Morgan, W. J., & Taussig, L. M. (1989). Breast feeding and lower respiratory tract illness in the first year of life. Group Health Medical Associates. BMJ (Clinical Research Ed.), 299(6705), 946–949. https://doi.org/10.1136/bmj.299.6705.946

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, L., Yoshimura, Y., Huang, Y., Suzuki, R., Yokoyama, M., Okabe, M., & Shimamura, M. (2000). Two independent pathways of maternal cell transmission to offspring: Through placenta during pregnancy and by breast-feeding after birth. Immunology, 101(4), 570–580. https://doi.org/10.1046/j.1365-2567.2000.00144.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nyquist, S. K., Gao, P., Haining, T. K., Retchin, M. R., Golan, Y., Drake, R. S., Kolb, K., Mead, B. E., Ahituv, N., Martinez, M. E., Shalek, A. K., Berger, B., & Goods, B. A. (2022). Cellular and transcriptional diversity over the course of human lactation. Proceedings of the National Academy of Sciences, 119(15):e2121720119. https://doi.org/10.1073/pnas.2121720119

  70. Department and Clinic of Endocrinology, Diabetology and Isotope Therapy, Faculty of Postgraduate Medical Training, Wroclaw Medical University, Wrocław, Poland, Zdrojewicz, Z., Herman, M., Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland, Sałamacha, M., Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland, … Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland. (2017). Human milk – facts and myths. Pediatria i Medycyna Rodzinna, 13(1), 11–20. https://doi.org/10.15557/PiMR.2017.0001.

  71. Goldman, A. S. (2000). Modulation of the Gastrointestinal Tract of Infants by Human Milk. Interfaces and Interactions. An Evolutionary Perspective. The Journal of Nutrition, 130(2), 426S-431S. https://doi.org/10.1093/jn/130.2.426S.

  72. Zheng, Y., Corrêa-Silva, S., de Souza, E. C., Maria Rodrigues, R., da Fonseca, F. A. M., Gilio, A. E., … Palmeira, P. (2020). Macrophage profile and homing into breast milk in response to ongoing respiratory infections in the nursing infant. Cytokine, 129, 155045. https://doi.org/10.1016/j.cyto.2020.155045.

  73. Witkowska-Zimny, M., & Kaminska-El-Hassan, E. (2017). Cells of human breast milk. Cellular & Molecular Biology Letters, 22, 11. https://doi.org/10.1186/s11658-017-0042-4

    Article  CAS  Google Scholar 

  74. Fitzstevens, J. L., Smith, K. C., Hagadorn, J. I., Caimano, M. J., Matson, A. P., & Brownell, E. A. (2017). Systematic Review of the Human Milk Microbiota. Nutrition in Clinical Practice: Official Publication of the American Society for Parenteral and Enteral Nutrition, 32(3), 354–364. https://doi.org/10.1177/0884533616670150

    Article  PubMed  Google Scholar 

  75. Perez, P. F., Doré, J., Leclerc, M., Levenez, F., Benyacoub, J., Serrant, P., … Donnet-Hughes, A. (2007). Bacterial Imprinting of the Neonatal Immune System: Lessons From Maternal Cells? Pediatrics, 119(3), e724–e732. https://doi.org/10.1542/peds.2006-1649.

  76. Moossavi, S., & Azad, M. B. (2020). Origins of human milk microbiota: New evidence and arising questions. Gut Microbes, 12(1), 1667722. https://doi.org/10.1080/19490976.2019.1667722

    Article  CAS  PubMed  Google Scholar 

  77. Martín, R., Langa, S., Reviriego, C., Jimínez, E., Marín, M. L., Xaus, J., … Rodríguez, J. M. (2003). Human milk is a source of lactic acid bacteria for the infant gut. The Journal of Pediatrics, 143(6), 754–758. https://doi.org/10.1016/j.jpeds.2003.09.028.

  78. Langa, S., Maldonado-Barragán, A., Delgado, S., Martín, R., Martín, V., Jiménez, E., … Rodríguez, J. M. (2012). Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: from genotype to phenotype. Applied Microbiology and Biotechnology, 94(5), 1279–1287. https://doi.org/10.1007/s00253-012-4032-1.

  79. Stark, P. L., & Lee, A. (1982). The Microbial Ecology of the Large Bowel of Breastfed and Formula-fed Infants During the First Year of Life. Journal of Medical Microbiology, 15(2), 189–203. https://doi.org/10.1099/00222615-15-2-189

    Article  CAS  PubMed  Google Scholar 

  80. Heikkilä, M. P., & Saris, P. E. J. (2003). Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. Journal of Applied Microbiology, 95(3), 471–478. https://doi.org/10.1046/j.1365-2672.2003.02002.x

    Article  CAS  PubMed  Google Scholar 

  81. Soto, A., Martín, V., Jiménez, E., Mader, I., Rodríguez, J. M., & Fernández, L. (2014). Lactobacilli and bifidobacteria in human breast milk: Influence of antibiotherapy and other host and clinical factors. Journal of Pediatric Gastroenterology and Nutrition, 59(1), 78–88. https://doi.org/10.1097/MPG.0000000000000347

    Article  PubMed  PubMed Central  Google Scholar 

  82. Martín, R., Jiménez, E., Olivares, M., Marín, M. L., Fernández, L., Xaus, J., & Rodríguez, J. M. (2006). Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. International Journal of Food Microbiology, 112(1), 35–43. https://doi.org/10.1016/j.ijfoodmicro.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  83. Martín, R., Olivares, M., Marín, M. L., Fernández, L., Xaus, J., & Rodríguez, J. M. (2005). Probiotic Potential of 3 Lactobacilli Strains Isolated From Breast Milk. Journal of Human Lactation, 21(1), 8–17. https://doi.org/10.1177/0890334404272393

    Article  PubMed  Google Scholar 

  84. Martín, R., Jiménez, E., Olivares, M., Marín, M. L., Fernández, L., Xaus, J., & Rodríguez, J. M. (2006). Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother–child pair. International Journal of Food Microbiology, 112(1), 35–43. https://doi.org/10.1016/j.ijfoodmicro.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  85. Lokesh, D., Parkesh, R., & Kammara, R. (2018). Bifidobacterium adolescentis is intrinsically resistant to antitubercular drugs. Scientific Reports, 8, 11897.https://doi.org/10.1038/s41598-018-30429-2.

  86. Moubareck, C., Gavini, F., Vaugien, L., Butel, M. J., & Doucet-Populaire, F. (2005). Antimicrobial susceptibility of bifidobacteria. The Journal of Antimicrobial Chemotherapy, 55(1), 38–44. https://doi.org/10.1093/jac/dkh495

    Article  CAS  PubMed  Google Scholar 

  87. Martín, R., Jiménez, E., Heilig, H., Fernández, L., Marín, M. L., Zoetendal, E. G., & Rodríguez, J. M. (2009). Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Applied and Environmental Microbiology, 75(4), 965–969. https://doi.org/10.1128/AEM.02063-08

    Article  CAS  PubMed  Google Scholar 

  88. Campedelli, I., Mathur, H., Salvetti, E., Clarke, S., Rea, M. C., Torriani, S., … O’Toole, P. W. (2018). Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Applied and Environmental Microbiology, 85(1), e01738–18. https://doi.org/10.1128/AEM.01738-18.

  89. Anisimova, E. A., & Yarullina, D. R. (2019). Antibiotic Resistance of LACTOBACILLUS Strains. Current Microbiology, 76(12), 1407–1416. https://doi.org/10.1007/s00284-019-01769-7

    Article  CAS  PubMed  Google Scholar 

  90. Delgado, S., Flórez, A. B., & Mayo, B. (2005). Antibiotic susceptibility of Lactobacillus and Bifidobacterium species from the human gastrointestinal tract. Current Microbiology, 50(4), 202–207. https://doi.org/10.1007/s00284-004-4431-3

    Article  CAS  PubMed  Google Scholar 

  91. Olivares, M., Díaz-Ropero, M. P., Martín, R., Rodríguez, J. M., & Xaus, J. (2006). Antimicrobial potential of four Lactobacillus strains isolated from breast milk. Journal of Applied Microbiology, 101(1), 72–79. https://doi.org/10.1111/j.1365-2672.2006.02981.x

    Article  CAS  PubMed  Google Scholar 

  92. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics - ScienceDirect. (2022, August 30). Retrieved August 30, 2022, from https://www.sciencedirect.com/science/article/abs/pii/S0924224403002565.

  93. Henrick, B. M., Yao, X.-D., Nasser, L., Roozrogousheh, A., & Rosenthal, K. L. (2017). Breastfeeding Behaviors and the Innate Immune System of Human Milk: Working Together to Protect Infants against Inflammation, HIV-1, and Other Infections. Frontiers in Immunology, 8, 1631. https://doi.org/10.3389/fimmu.2017.01631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hassiotou, F., Hepworth, A. R., Metzger, P., Tat Lai, C., Trengove, N., Hartmann, P. E., & Filgueira, L. (2013). Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clinical & Translational Immunology, 2(4), e3. https://doi.org/10.1038/cti.2013.1.

  95. Smith, C. W., & Goldman, A. S. (1970). Interactions of lymphocytes and macrophages from human colostrum: Characteristics of the interacting lymphocyte. Journal of the Reticuloendothelial Society, 8(1), 91–104.

    CAS  PubMed  Google Scholar 

  96. Smith, C. W., & Goldman, A. S. (1968). The cells of human colostrum. I. In vitro studies of morphology and functions. Pediatric Research, 2(2), 103–109. https://doi.org/10.1203/00006450-196803000-00005.

  97. Wold, A., & Adlerberth, I. (1998). Does breastfeeding affect the infant’s immune responsiveness? Acta Paediatrica, 87(1), 19–22. https://doi.org/10.1111/j.1651-2227.1998.tb01378.x

    Article  CAS  PubMed  Google Scholar 

  98. Holt, P. G., Oliver, J., Bilyk, N., McMenamin, C., McMenamin, P. G., Kraal, G., & Thepen, T. (1993). Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. The Journal of Experimental Medicine, 177(2), 397–407. https://doi.org/10.1084/jem.177.2.397

    Article  CAS  PubMed  Google Scholar 

  99. Jain, L., Vidyasagar, D., Xanthou, M., Ghai, V., Shimada, S., & Blend, M. (1989). In vivo distribution of human milk leucocytes after ingestion by newborn baboons. Archives of Disease in Childhood, 64(7 Spec No), 930–933. https://doi.org/10.1136/adc.64.7_spec_no.930.

  100. Papanicolaou, G. N., Bader, G. M., Holmquist, D. G., & Falk, E. A. (1956). Cytologic evaluation of breast secretions. Annals of the New York Academy of Sciences, 63(6), 1409–1421. https://doi.org/10.1111/j.1749-6632.1956.tb32146.x

    Article  CAS  PubMed  Google Scholar 

  101. Twigger, A.-J., Hepworth, A. R., Tat Lai, C., Chetwynd, E., Stuebe, A. M., Blancafort, P., … Kakulas, F. (2015). Gene expression in breastmilk cells is associated with maternal and infant characteristics. Scientific Reports, 5(1), 12933. https://doi.org/10.1038/srep12933.

  102. Cregan, M. D., Fan, Y., Appelbee, A., Brown, M. L., Klopcic, B., Koppen, J., … Hartmann, P. E. (2007). Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell and Tissue Research, 329(1), 129–136. https://doi.org/10.1007/s00441-007-0390-x.

  103. Mane, S., Taneja, S., Madala, J. S., Agarkhedkar, S., & Khetan, M. (2022). Study of Stem Cells in Human Milk. Cureus, 14(3). https://doi.org/10.7759/cureus.23701.

  104. Hassiotou, F., Heath, B., Ocal, O., Filgueira, L., Geddes, D., Hartmann, P., & Wilkie, T. (2014). Breastmilk stem cell transfer from mother to neonatal organs (216.4). The FASEB Journal, 28(S1), 216.4. https://doi.org/10.1096/fasebj.28.1_supplement.216.4.

  105. Ninkina, N., Kukharsky, M. S., Hewitt, M. V., Lysikova, E. A., Skuratovska, L. N., Deykin, A. V., & Buchman, V. L. (2019). Stem cells in human breast milk. Human Cell, 32(3), 223–230. https://doi.org/10.1007/s13577-019-00251-7

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kersin, S. G., & Özek, E. (2021). Breast milk stem cells: Are they magic bullets in neonatology? Turkish Archives of Pediatrics, 56(3), 187–191. https://doi.org/10.5152/TurkArchPediatr.2021.21006

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kinder, J. M., Jiang, T. T., Ertelt, J. M., Xin, L., Strong, B. S., Shaaban, A. F., & Way, S. S. (2015). Cross-Generational Reproductive Fitness Enforced by Microchimeric Maternal Cells. Cell, 162(3), 505–515. https://doi.org/10.1016/j.cell.2015.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Full article: Long-term feto-maternal microchimerism revisited. (n.d.). https://doi.org/10.4161/chim.1.1.12743.

  109. Immunological implications of pregnancy-induced microchimerism | Nature Reviews Immunology. (n.d.). Retrieved February 27, 2023, from https://www.nature.com/articles/nri.2017.38.

  110. Breast milk MSCs: An explanation of tissue growth and maturation of offspring - Abd Allah - 2016 - IUBMB Life - Wiley Online Library. (n.d.). Retrieved February 27, 2023, from https://iubmb.onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/iub.1573.

  111. Aydın, M. Ş, Yiğit, E. N., Vatandaşlar, E., Erdoğan, E., & Öztürk, G. (2018). Transfer and Integration of Breast Milk Stem Cells to the Brain of Suckling Pups. Scientific Reports, 8(1), 14289. https://doi.org/10.1038/s41598-018-32715-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Breastfeeding-related maternal microchimerism | Nature Reviews Immunology. (n.d.). Retrieved February 27, 2023, from https://www.nature.com/articles/nri.2017.115.

  113. Breastmilk cell trafficking induces microchimerism‐mediated immune system maturation in the infant - Molès - 2018 - Pediatric Allergy and Immunology - Wiley Online Library. (n.d.). Retrieved February 27, 2023, from https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1111/pai.12841.

  114. Zhang, L., van Bree, S., van Rood, J. J., & Claas, F. H. (1991). Influence of breast feeding on the cytotoxic T cell allorepertoire in man. Transplantation, 52(5), 914–916.

    Article  CAS  PubMed  Google Scholar 

  115. Hanson, L. (2000). The mother-offspring dyad and the immune system. Acta Paediatrica, 89(3), 252–258. https://doi.org/10.1111/j.1651-2227.2000.tb01325.x

    Article  CAS  PubMed  Google Scholar 

  116. Ylostalo, J. H. (2021). 3D Stem Cell Culture. Retrieved from https://directory.doabooks.org/handle/20.500.12854/68280.

  117. Khan, F. A., Almohazey, D., Alomari, M., & Almofty, S. A. (2018). Isolation, Culture, and Functional Characterization of Human Embryonic Stem Cells: Current Trends and Challenges. Stem Cells International, 2018, e1429351. https://doi.org/10.1155/2018/1429351.

  118. McCulloch, E. A., & Till, J. E. (2005). Perspectives on the properties of stem cells. Nature Medicine, 11(10), 1026–1028. https://doi.org/10.1038/nm1005-1026

    Article  CAS  PubMed  Google Scholar 

  119. Mayhall, E. A., Paffett-Lugassy, N., & Zon, L. I. (2004). The clinical potential of stem cells. Current Opinion in Cell Biology, 16(6), 713–720. https://doi.org/10.1016/j.ceb.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  120. Brown, C., McKee, C., Bakshi, S., Walker, K., Hakman, E., Halassy, S., … Chaudhry, G. R. (2019). Mesenchymal stem cells: Cell therapy and regeneration potential. Journal of Tissue Engineering and Regenerative Medicine, 13(9), 1738–1755. https://doi.org/10.1002/term.2914

  121. Bacakova, L., Zarubova, J., Travnickova, M., Musilkova, J., Pajorova, J., Slepicka, P., … Molitor, M. (2018). Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnology Advances, 36(4), 1111–1126. https://doi.org/10.1016/j.biotechadv.2018.03.011

  122. Kolios, G., & Moodley, Y. (2013). Introduction to Stem Cells and Regenerative Medicine. Respiration, 85(1), 3–10. https://doi.org/10.1159/000345615

    Article  PubMed  Google Scholar 

  123. Fan, Y., Chong, Y. S., Choolani, M. A., Cregan, M. D., & Chan, J. K. Y. (2010). Unravelling the Mystery of Stem/Progenitor Cells in Human Breast Milk. PLoS ONE, 5(12), e14421. https://doi.org/10.1371/journal.pone.0014421.

  124. Hassiotou, F., Beltran, A., Chetwynd, E., Stuebe, A. M., Twigger, A.-J., Metzger, P., … Hartmann, P. E. (2012). Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells (Dayton, Ohio), 30(10), 2164–2174. https://doi.org/10.1002/stem.1188.

  125. Hosseini, S. M., Talaei-khozani, T., Sani, M., & Owrangi, B. (2014). Differentiation of Human Breast-Milk Stem Cells to Neural Stem Cells and Neurons. Neurology Research International, 2014, 807896. https://doi.org/10.1155/2014/807896.

  126. Sani, M., Hosseini, S. M., Salmannejad, M., Aleahmad, F., Ebrahimi, S., Jahanshahi, S., & Talaei-Khozani, T. (2015). Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biology International, 39(5), 611–618. https://doi.org/10.1002/cbin.10432

    Article  CAS  PubMed  Google Scholar 

  127. Tang, C., Zhou, Q., Lu, C., Xiong, M., & Lee, S. (2019). Comparison and culturing different types of cells from fresh breast milk with different culture medium. Pediatric Medicine, 2(0). https://doi.org/10.21037/pm.2019.02.02.

  128. Li, S., Zhang, L., Zhou, Q., Jiang, S., Yang, Y., & Cao, Y. (2019). Characterization of Stem Cells and Immune Cells in Preterm and Term Mother’s Milk. Journal of Human Lactation, 35(3), 528–534. https://doi.org/10.1177/0890334419838986

    Article  PubMed  Google Scholar 

  129. Goudarzi, N., Shabani, R., Ebrahimi, M., Baghestani, A., Dehdashtian, E., Vahabzadeh, G., … Katebi, M. (2020). Comparative phenotypic characterization of human colostrum and breast milk-derived stem cells. Human Cell, 33(2), 308–317. https://doi.org/10.1007/s13577-019-00320-x.

  130. Borhani-Haghighi, M., Navid, S., & Mohamadi, Y. (2020). The Therapeutic Potential of Conditioned Medium from Human Breast Milk Stem Cells in Treating Spinal Cord Injury. Asian Spine Journal, 14(2), 131–138. https://doi.org/10.31616/asj.2019.0026.

  131. Gleeson, J. P., Chaudhary, N., Fein, K. C., Doerfler, R., Hredzak-Showalter, P., & Whitehead, K. A. (2022). Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. Science Advances, 8(26), eabm6865. https://doi.org/10.1126/sciadv.abm6865.

  132. Sani, M., Ebrahimi, S., Aleahmad, F., Salmannejad, M., Hosseini, S. M., Mazarei, G., & Talaei-Khozani, T. (2017). Differentiation potential of breast milk-derived mesenchymal stem cells into hepatocyte-like cells. Tissue Engineering and Regenerative Medicine, 14(5), 587–593. https://doi.org/10.1007/s13770-017-0066-x

  133. Widjaja, S. L., Salimo, H., & Yulianto, I. (n.d.). Problems in Breastmilk Cell Isolation, 9.

  134. Li, S., Zhang, L., Zhou, Q., Jiang, S., Yang, Y., & Cao, Y. (2019). Characterization of Stem Cells and Immune Cells in Preterm and Term Mother’s Milk. Journal of Human Lactation: Official Journal of International Lactation Consultant Association, 35(3), 528–534. https://doi.org/10.1177/0890334419838986

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology, "Innovation in Science Pursuit for Inspired Research (INSPIRE)" Government of India, for their support.

Author information

Authors and Affiliations

Authors

Contributions

Pooja Kumari: Conceptualization, Writing—Original Draft, Data Curation, Writing—Review & Editing; Aayushi Raval: Writing—Original Draft, Data collection, Reviewing and Editing; Pranav Rana: Reviewing and Editing; Sanjeev Kumar Mahto: Supervision, Project Administration, Reviewing and Editing.

Corresponding author

Correspondence to Sanjeev Kumar Mahto.

Ethics declarations

Conflicts of Interest/Competing Interests

The author declares no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Raval, A., Rana, P. et al. Regenerative Potential of Human Breast Milk: A Natural Reservoir of Nutrients, Bioactive Components and Stem cells. Stem Cell Rev and Rep 19, 1307–1327 (2023). https://doi.org/10.1007/s12015-023-10534-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10534-0

Keywords

Navigation