Skip to main content

Advertisement

Log in

Effects of Long-Term In Vitro Expansion on Genetic Stability and Tumor Formation Capacity of Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

A Correction to this article was published on 24 January 2022

This article has been updated

Abstract

Stem cell therapeutics are emerging as novel alternative treatments for various neurodegenerative diseases based on their regenerative potentials. However, stem cell transplantation might have side effects such as tumor formation that limit their clinical applications. Especially, in vitro expansion of stem cells might provoke genetic instability and tumorigenic potential. To address this issue, we analyzed genomic alterations of adult human multipotent neural cells (ahMNCs), a type of human adult neural stem cells, after a long-term in vitro culture process (passage 15) using sensitive analysis techniques including karyotyping, array comparative genomic hybridization (aCGH), and whole exome sequencing (WES). Although karyotyping did not find any major abnormalities in chromosomal number or structure, diverse copy number variations (CNVs) and genetic mutations were detected by aCGH and WES in all five independent ahMNCs. However, the number of CNVs and genetic mutations did not increase and many of them did not persist as in vitro culture progressed. Although most observed CNVs and genetic mutations were not shared by all five ahMNCs, nonsynonymous missense mutations at MUC4 were found in three out of five long-term cultured ahMNC lines. The genetic instability did not confer in vivo tumorigenic potential to ahMNCs. Collectively, these results indicate that, although genetic instability can be induced by long-term in vitro expansion of stem cells, it is not sufficient to fully exert tumor formation capacity of stem cells. Other functional effects of such genetic instability need to be further elucidated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

All the data and materials are available.

Code Availability (Software Application or Custom Code)

Not applicable.

Change history

References

  1. Lunn, J. S., Sakowski, S. A., Hur, J., & Feldman, E. L. (2011). Stem cell technology for neurodegenerative diseases. Annals of Neurology, 70(3), 353–361. https://doi.org/10.1002/ana.22487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lindvall, O., & Kokaia, Z. (2010). Stem cells in human neurodegenerative disorders--time for clinical translation? The Journal of Clinical Investigation, 120(1), 29–40. https://doi.org/10.1172/JCI40543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frey-Vasconcells, J., Whittlesey, K. J., Baum, E., & Feigal, E. G. (2012). Translation of stem cell research: Points to consider in designing preclinical animal studies. Stem Cells Translational Medicine, 1(5), 353–358. https://doi.org/10.5966/sctm.2012-0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harding, J., Roberts, R. M., & Mirochnitchenko, O. (2013). Large animal models for stem cell therapy. Stem Cell Research & Therapy, 4(2), 23. https://doi.org/10.1186/scrt171

    Article  Google Scholar 

  5. Lee, K. H., Nam, H., Jeong da, E., Kim, S. S., Song, H. J., Pyeon, H. J., Kang, K., Hong, S. C., Nam, D. H., & Joo, K. M. (2016). Sensitive tumorigenic potential evaluation of adult human multipotent neural cells immortalized by hTERT gene transduction. PLoS One, 11(7), e0158639. https://doi.org/10.1371/journal.pone.0158639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lund, R. J., Narva, E., & Lahesmaa, R. (2012). Genetic and epigenetic stability of human pluripotent stem cells. Nature Reviews. Genetics, 13(10), 732–744. https://doi.org/10.1038/nrg3271

    Article  CAS  PubMed  Google Scholar 

  7. Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., Taillon, B. E., Chen, Z., Tanzer, A., Saunders, A. C., Chi, J., Yang, F., Carter, N. P., Hurles, M. E., Weissman, S. M., et al. (2007). Paired-end mapping reveals extensive structural variation in the human genome. Science, 318(5849), 420–426. https://doi.org/10.1126/science.1149504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., Haugen, E., Hayden, H., Albertson, D., Pinkel, D., Olson, M. V., & Eichler, E. E. (2005). Fine-scale structural variation of the human genome. Nature Genetics, 37(7), 727–732. https://doi.org/10.1038/ng1562

    Article  CAS  PubMed  Google Scholar 

  9. Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24(3), 133–141. https://doi.org/10.1016/j.tig.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  10. Gore, A., Li, Z., Fung, H. L., Young, J. E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M. A., Kiskinis, E., Lee, J. H., Loh, Y. H., Manos, P. D., Montserrat, N., Panopoulos, A. D., Ruiz, S., Wilbert, M. L., Yu, J., Kirkness, E. F., et al. (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature, 471(7336), 63–67. https://doi.org/10.1038/nature09805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischer, U., Keller, A., Voss, M., Backes, C., Welter, C., & Meese, E. (2012). Genome-wide gene amplification during differentiation of neural progenitor cells in vitro. PLoS One, 7(5), e37422. https://doi.org/10.1371/journal.pone.0037422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Joo, K. M., Kang, B. G., Yeon, J. Y., Cho, Y. J., An, J. Y., Song, H. S., Won, J. H., Kim, S. J., Hong, S. C., & Nam, D. H. (2013). Experimental and clinical factors influencing long-term stable in vitro expansion of multipotent neural cells from human adult temporal lobes. Experimental Neurology, 240, 168–177. https://doi.org/10.1016/j.expneurol.2012.11.021

    Article  PubMed  Google Scholar 

  13. Lee, K. H., Pyeon, H. J., Nam, H., Won, J. S., Hwang, J. Y., Lee, K. A., Yeon, J. Y., Hong, S. C., Nam, D. H., Lee, K., Lee, S. H., & Joo, K. M. (2018). Significant therapeutic effects of adult human multipotent neural cells on spinal cord injury. Stem Cell Research, 31, 71–78. https://doi.org/10.1016/j.scr.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  14. Won, J. S., Yeon, J. Y., Pyeon, H. J., Noh, Y. J., Hwang, J. Y., Kim, C. K., Nam, H., Lee, K. H., Lee, S. H., & Joo, K. M. (2021). Optimal preclinical conditions for using adult human multipotent neural cells in the treatment of spinal cord injury. International Journal of Molecular Sciences, 22(5). https://doi.org/10.3390/ijms22052579

  15. Lee, Y. E., An, J., Lee, K. H., Kim, S. S., Song, H. J., Pyeon, H., Nam, H., Kang, K., & Joo, K. M. (2016). Correction: The synergistic local immunosuppressive effects of neural stem cells expressing Indoleamine 2,3-dioxygenase (IDO) in an experimental autoimmune encephalomyelitis (EAE) animal model. PLoS One, 11(2), e0148720. https://doi.org/10.1371/journal.pone.0148720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & Genome Project Data Processing, S. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491–498. https://doi.org/10.1038/ng.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cibulskis, K., Lawrence, M. S., Carter, S. L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Meyerson, M., Lander, E. S., & Getz, G. (2013). Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology, 31(3), 213–219. https://doi.org/10.1038/nbt.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., Lawrence, M. S., Sivachenko, A. Y., Sougnez, C., Zou, L., Cortes, M. L., Fernandez-Lopez, J. C., Peng, S., Ardlie, K. G., Auclair, D., Bautista-Pina, V., Duke, F., Francis, J., Jung, J., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 486(7403), 405–409. https://doi.org/10.1038/nature11154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P., & Cunningham, F. (2010). Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics, 26(16), 2069–2070. https://doi.org/10.1093/bioinformatics/btq330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park, H., Kim, J. I., Ju, Y. S., Gokcumen, O., Mills, R. E., Kim, S., Lee, S., Suh, D., Hong, D., Kang, H. P., Yoo, Y. J., Shin, J. Y., Kim, H. J., Yavartanoo, M., Chang, Y. W., Ha, J. S., Chong, W., Hwang, G. R., Darvishi, K., et al. (2010). Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nature Genetics, 42(5), 400–405. https://doi.org/10.1038/ng.555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ju, Y. S., Hong, D., Kim, S., Park, S. S., Kim, S., Lee, S., Park, H., Kim, J. I., & Seo, J. S. (2010). Reference-unbiased copy number variant analysis using CGH microarrays. Nucleic Acids Research, 38(20), e190. https://doi.org/10.1093/nar/gkq730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F., & Wong, K. K. (2014). Non-small-cell lung cancers: A heterogeneous set of diseases. Nature Reviews. Cancer, 14(8), 535–546. https://doi.org/10.1038/nrc3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Endersby, R., & Baker, S. J. (2008). PTEN signaling in brain: Neuropathology and tumorigenesis. Oncogene, 27(41), 5416–5430. https://doi.org/10.1038/onc.2008.239

    Article  CAS  PubMed  Google Scholar 

  25. Chaturvedi, P., Singh, A. P., & Batra, S. K. (2008). Structure, evolution, and biology of the MUC4 mucin. The FASEB Journal, 22(4), 966–981. https://doi.org/10.1096/fj.07-9673rev

    Article  CAS  PubMed  Google Scholar 

  26. Singh, A. P., Chaturvedi, P., & Batra, S. K. (2007). Emerging roles of MUC4 in cancer: A novel target for diagnosis and therapy. Cancer Research, 67(2), 433–436. https://doi.org/10.1158/0008-5472.CAN-06-3114

    Article  CAS  PubMed  Google Scholar 

  27. Hollingsworth, M. A., & Swanson, B. J. (2004). Mucins in cancer: Protection and control of the cell surface. Nature Reviews. Cancer, 4(1), 45–60. https://doi.org/10.1038/nrc1251

    Article  CAS  PubMed  Google Scholar 

  28. Andrianifahanana, M., Moniaux, N., Schmied, B. M., Ringel, J., Friess, H., Hollingsworth, M. A., Buchler, M. W., Aubert, J. P., & Batra, S. K. (2001). Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: A potential role of MUC4 as a tumor marker of diagnostic significance. Clinical Cancer Research, 7(12), 4033–4040 https://www.ncbi.nlm.nih.gov/pubmed/11751498

    CAS  PubMed  Google Scholar 

  29. Hanaoka, J., Kontani, K., Sawai, S., Ichinose, M., Tezuka, N., Inoue, S., Fujino, S., & Ohkubo, I. (2001). Analysis of MUC4 mucin expression in lung carcinoma cells and its immunogenicity. Cancer, 92(8), 2148–2157.

    Article  CAS  PubMed  Google Scholar 

  30. Davidson, B., Baekelandt, M., & Shih Ie, M. (2007). MUC4 is upregulated in ovarian carcinoma effusions and differentiates carcinoma cells from mesothelial cells. Diagnostic Cytopathology, 35(12), 756–760. https://doi.org/10.1002/dc.20771

    Article  PubMed  Google Scholar 

  31. Reagan-Shaw, S., Nihal, M., & Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB Journal, 22(3), 659–661. https://doi.org/10.1096/fj.07-9574LSF

    Article  CAS  PubMed  Google Scholar 

  32. Loeb, K. R., & Loeb, L. A. (2000). Significance of multiple mutations in cancer. Carcinogenesis, 21(3), 379–385 https://www.ncbi.nlm.nih.gov/pubmed/10688858

    Article  CAS  PubMed  Google Scholar 

  33. Loeb, L. A., Loeb, K. R., & Anderson, J. P. (2003). Multiple mutations and cancer. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 776–781. https://doi.org/10.1073/pnas.0334858100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abumaree, M., Al Jumah, M., Pace, R. A., & Kalionis, B. (2012). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews and Reports, 8(2), 375–392. https://doi.org/10.1007/s12015-011-9312-0

    Article  CAS  PubMed  Google Scholar 

  35. Shi, Y., Wang, Y., Li, Q., Liu, K., Hou, J., Shao, C., & Wang, Y. (2018). Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nature Reviews. Nephrology, 14(8), 493–507. https://doi.org/10.1038/s41581-018-0023-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from Ministry of Food and Drug Safety (14172MFDS974 and 18172MFDS182), National Research Foundation (2016R1A5A2945889 and 2019R1F1A1060243), Korea Basic Science Institute (2020R1A6C101A191), and the Samsung Biomedical Research Institute grant (SMX1161411).

Author information

Authors and Affiliations

Authors

Contributions

Hyun Nam, In-Hee Lee, and Jason K Sa designed and performed all the experiments. They analyzed the data of those experiments and wrote the manuscript. Hee-Jang Pyeon was involved in the characterization of ahMNCs. Hee-Jang Pyeon participated in the visualization of data generated from aCGH and WES. Kee Hang Lee was involved in the tumorigenicity of ahMNCs. Kyeunghoon Lee advised the whole research procedures. Sun-Ho Lee and Kyeung Min Joo designed the research concept, guided the experiments and corrected the manuscript. Especially, Sung Soo Kim made a meaningful contribution to the revision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sun-Ho Lee or Kyeung Min Joo.

Ethics declarations

Conflicts of Interest

The authors have declared that no competing interests exist.

Ethical Approval

The authors have declared that no competing interests exist.

Consent to Publication

All authors have given their consent for publication.

Consent to Participate (include appropriate statements)

All authors have consent for participation in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliations captured for the authors Sung Soo Kim, Kyunghoon Lee, Sun-Ho Lee and Kyeung Min Joo were incorrect.

Supplementary Information

Supplementary Figure 1.

Analysis of CNVs of ahMNCs. Total number (A) and accumulated sizes (B) of gain or loss of CNVs were presented at each chromosome. In this analysis, data of Table 1 were utilized. (PPTX 52 kb)

Supplementary Table 1.

Detected CNVs in aCGH analysis (XLSX 19 kb)

Supplementary Table 2.

Detected genetic mutations in WES (XLSX 141 kb)

Supplementary Table 3.

qPCR data with human-specific Alu primers (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, H., Lee, IH., Sa, J.K. et al. Effects of Long-Term In Vitro Expansion on Genetic Stability and Tumor Formation Capacity of Stem Cells. Stem Cell Rev and Rep 18, 241–257 (2022). https://doi.org/10.1007/s12015-021-10290-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10290-z

Keywords

Navigation