Skip to main content

Advertisement

Log in

The Strategies and Challenges of CCR5 Gene Editing in Hematopoietic Stem and Progenitor Cells for the Treatment of HIV

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

HIV infection continues to be a serious health issue with an alarming global spread, owing to the fact that attempts at developing an effective vaccine or a permanent cure remains futile. So far, the only available treatment for the clinical management of HIV is the combined Anti-Retroviral Therapy (cART), but the long-term cART is associated with metabolic changes, organ damages, and development and transmission of drug resistant HIV strains. Thus, there is a need for the development of one-time curative treatment for HIV infection. The allogeneic transplantation with the Hematopoietic Stem and Progenitor cells (HSPCs) having 32 bp deletion in Chemokine receptor 5 gene (CCR5 Δ32) demonstrated successful HIV remission in the Berlin and London patients, and highlighted that transplantation of CCR5 null HSPCs is a promising approach for a long- term HIV remission. The advent of gene editing technologies offers a new choice of generating ex vivo CCR5 ablated allogeneic or autologous HSPCs for stem cell transplantation into HIV patients. Many groups are attempting CCR5 disruption in HSPCs using various gene-editing strategies. At least two such studies, involving CCR5 gene editing in HSPCs have entered the clinical trials. This review aims to outline the strategies taken for CCR5 gene editing and discuss the challenges associated with the development of CCR5 manipulated HSPCs for the gene therapy of HIV infection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

cART:

combined Anti-Retroviral Therapy

HSPCs:

Hematopoietic Stem and Progenitor cells

CCR5:

Chemokine receptor 5

HIV-1:

Human Immunodeficiency Virus-1

AIDS:

Acquired Immunodeficiency Syndrome

AZT:

zidovudine

HAART:

Highly Activated Anti-retroviral therapy

AML:

Acute Myeloid Leukemia

TBI:

Total body irradiation

R5:

CCR5 utilizing HIV virus

X4:

CXCR4 utilizing HIV virus

gp:

glycoprotein

References

  1. Fischl MA, Richman DD, Grieco MH, Gottlieb MS, Volberding PA, Laskin OL, et al. The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. The New England Journal of Medicine [Internet]. 1987 Jul 23 [cited 2019 May 22];317(4):185–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3299089.

  2. Collier AC, Coombs RW, Schoenfeld DA, Bassett RL, Timpone J, Baruch A, et al. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. The New England Journal of Medicine [Internet]. 1996 Apr 18 [cited 2019 May 22];334(16):1011–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8598838.

  3. Wiegand A, Spindler J, Hong FF, Shaoc W, Cyktor JC, Cillo AR, et al. Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2017 May 2 [cited 2020 Apr 21];114(18):E3659–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28416661.

  4. Bertrand L, Cho HJ, Toborek M. Blood-brain barrier pericytes as a target for HIV-1 infection. [cited 2020 Apr 21]; Available from: https://academic.oup.com/brain/article-abstract/142/3/502/5298568

  5. Montessori V, Press N, Harris M, Akagi L, Montaner JSG. 20040120S00033P229 Sudah. 2004;170(2):229–38.

  6. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, et al. Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. N Engl J Med [Internet]. 2009 Dec 3 [cited 2020 Apr 21];361(23):2209–20. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0908492

  7. Adepoju P. Moving on from the failed HIV vaccine clinical trial. Lancet HIV [Internet]. 2020 Mar 1 [cited 2020 Apr 21];7(3):e161. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352301820300473

  8. Coakley, E., Petropoulos, C. J., & Whitcomb, J. M. (2005). Assessing chemokine co-receptor usage in HIV. Current Opinion in Infectious Diseases, 18(1), 9–15.

    Article  CAS  Google Scholar 

  9. Gulick RM, Lalezari J, Goodrich J, Clumeck N, DeJesus E, Horban A, et al. Maraviroc for Previously Treated Patients with R5 HIV-1 Infection. The New England Journal of Medicine [Internet]. 2008 Oct 2 [cited 2020 Apr 21];359(14):1429–41. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0803152

  10. Zhang, H., Kang, D., Huang, B., Liu, N., Zhao, F., Zhan, P., et al. (2016). Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV agents: Recent advances and future opportunities. European Journal of Medicinal Chemistry. Elsevier Masson SAS, 114, 65–78.

  11. Berger, E. A., Murphy, P. M., & Farber, J. M. (1999). Chemokine receptors AS HIV-1 coreceptors: Roles in viral entry, tropism, and disease. Annual Review of Immunology, 17(1), 657–700.

    Article  CAS  Google Scholar 

  12. Arif MS, Hunter J, Léda AR, Zukurov JPL, Samer S, Camargo M, et al. Pace of coreceptor tropism switch in HIV-1-infected individuals after recent infection. Journal of Virology [Internet]. 2017 Oct 1 [cited 2020 Nov 3];91(19). Available from: https://doi.org/10.1128/JVI.00793-17

  13. Castagna A, Monno L, Carta S, Galli L, Carrara S, Fedele V, et al. Switch of predicted HIV-1 tropism in treated subjects and its association with disease progression. In: Medicine (United States) [Internet]. Lippincott Williams and Wilkins; 2016 [cited 2020 Nov 3]. Available from: /pmc/articles/PMC5591117/?report=abstract

  14. Solloch U V., Lang K, Lange V, Böhme I, Schmidt AH, Sauter J. Frequencies of gene variant CCR5-Δ32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Hum Immunol [Internet]. 2017 Nov 1 [cited 2019 May 16];78(11–12):710–7. Available from: https://www.sciencedirect.com/science/article/pii/S0198885917305104

  15. Hütter G, Nowak D, Mossner M, Ganepola S, Müßig A, Allers K, et al. Long-Term Control of HIV by CCR5 Delta32/Delta32 Stem-Cell Transplantation. N Engl J Med [Internet]. 2009 Feb 12 [cited 2019 Apr 27];360(7):692–8. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0802905

  16. Hütter, G., & Thiel, E. (2011). Allogeneic transplantation of CCR5-deficient progenitor cells in a patient with HIV infection: An update after 3 years and the search for patient no. 2. Aids., 25(2), 273–274.

    Article  Google Scholar 

  17. Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature [Internet]. 2019 Apr 5 [cited 2019 May 22];568(7751):244–8. Available from: http://www.nature.com/articles/s41586-019-1027-4

  18. Gupta, R. K., Peppa, D., Hill, A. L., Gálvez, C., Salgado, M., Pace, M., et al. (2020). Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: A case report. Lancet HIV, 1(20), 1–8.

    Google Scholar 

  19. Peterson CW, Benne C, Polacino P, Kaur J, McAllister CE, Filali-Mouhim A, et al. Loss of immune homeostasis dictates SHIV rebound after stem-cell transplantation. JCI Insight [Internet]. 2017 Feb 23 [cited 2020 Nov 3];2(4):91230. Available from: https://doi.org/10.1172/jci.insight.91230

  20. Peterson, C. W., Wang, J., Deleage, C., Reddy, S., Kaur, J., Polacino, P., et al. (2018). Differential impact of transplantation on peripheral and tissue-associated viral reservoirs: Implications for HIV gene therapy. PLoS Pathogens, 14(4), 1–22.

    Article  Google Scholar 

  21. Henrich, T. J., Hanhauser, E., Marty, F. M., Sirignano, M. N., Keating, S., Lee, T., et al. (2014). Antiretroviral-free HIV-1 remission and viral rebound following allogeneic stem cell transplantation: A report of two cases. Annals of Internal Medicine, 161(5), 319–327.

    Article  Google Scholar 

  22. Dorr, P., Westby, M., Dobbs, S., Griffin, P., Irvine, B., Macartney, M., Mori, J., Rickett, G., Smith-Burchnell, C., Napier, C., Webster, R., Armour, D., Price, D., Stammen, B., Wood, A., & Perros, M. (2005). Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrobial Agents and Chemotherapy, 49(11), 4721–4732.

    Article  CAS  Google Scholar 

  23. Fätkenheuer G, Nelson M, Lazzarin A, Konourina I, Hoepelman AIM, Lampiris H, et al. Subgroup analyses of maraviroc in previously treated R5 HIV-1 INFECTION. N Engl J Med [Internet]. 2008 Oct 2 [cited 2019 May 8];359(14):1442–55. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0803154

  24. Miao, M., De Clercq, E., & Li, G. (2020). Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol [internet], 16(1), 11–30. Available from:. https://doi.org/10.1080/17425255.2020.1711884.

    Article  Google Scholar 

  25. Gulick RM, Su Z, Flexner C, Hughes MD, Skolnik PR, Wilkin TJ, et al. Phase 2 study of the safety and efficacy of vicriviroc, a CCR5 inhibitor, in HIV-1–infected, treatment-experienced patients: AIDS clinical trials group 5211. The Journal of Infectious Diseases [Internet]. 2007 Jul 15 [cited 2019 May 8];196(2):304–12. Available from: https://academic.oup.com/jid/article-lookup/doi/10.1086/518797

  26. Nichols WG, Steel HM, Bonny T, Adkison K, Curtis L, Millard J, et al. Hepatotoxicity observed in clinical trials of aplaviroc (GW873140). Antimicrob Agents Chemother [Internet]. 2008 Mar 1 [cited 2019 May 8];52(3):858–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18070967.

  27. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol [Internet]. 2008 Jul 29 [cited 2019 May 7];26(7):808–16. Available from: http://www.nature.com/articles/nbt1410

  28. Tebas, P., Stein, D., Tang, W. W., Frank, I., Wang, S. Q., Lee, G., Spratt, S. K., Surosky, R. T., Giedlin, M. A., Nichol, G., Holmes, M. C., Gregory, P. D., Ando, D. G., Kalos, M., Collman, R. G., Binder-Scholl, G., Plesa, G., Hwang, W. T., Levine, B. L., & June, C. H. (2014). Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. The New England Journal of Medicine, 370(10), 901–910.

    Article  CAS  Google Scholar 

  29. Yu, S., Yao, Y., Xiao, H., Li, J., Liu, Q., Yang, Y., Adah, D., Lu, J., Zhao, S., Qin, L., & Chen, X. (2018). Simultaneous knockout of CXCR4 and CCR5 genes in CD4+ T cells via CRISPR/Cas9 confers resistance to both X4- and R5-tropic human immunodeficiency virus type 1 infection. Human Gene Therapy, 29(1), 51–67.

    Article  CAS  Google Scholar 

  30. Didigu CA, Wilen CB, Wang J, Duong J, Secreto AJ, Danet-Desnoyers GA, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood [Internet]. 2014 Jan 2 [cited 2019 may 22];123(1):61–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24162716.

  31. Li, L., Krymskaya, L., Wang, J., Henley, J., Rao, A., Cao, L. F., Tran, C. A., Torres-Coronado, M., Gardner, A., Gonzalez, N., Kim, K., Liu, P. Q., Hofer, U., Lopez, E., Gregory, P. D., Liu, Q., Holmes, M. C., Cannon, P. M., Zaia, J. A., & DiGiusto, D. L. (2013 Jun 1). Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Molecular Therapy, 21(6), 1259–1269.

    Article  CAS  Google Scholar 

  32. Holt N, Wang J, Kim K, Friedman G. Zinc finger nuclease-mediated CCR5 knockout hematopoietic stem cell transplantation controls HIV-1 in vivo. Nat Biotechnol [Internet]. 2010 [cited 2020 May 7];28(8):839–47. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080757/

  33. DiGiusto, D. L., Cannon, P. M., Holmes, M. C., Li, L., Rao, A., Wang, J., et al. (2016 Mar 16). Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol Ther - Methods Clin Dev, 3, 16067.

    Article  Google Scholar 

  34. Yu S, Ou Y, Xiao H, Li J, Adah D, Liu S, et al. Experimental treatment of SIV-infected macaques via autograft of CCR5-disrupted hematopoietic stem and progenitor cells. Mol Ther - Methods Clin Dev [Internet]. 2020;17(June):520–31. Available from: https://doi.org/10.1016/j.omtm.2020.03.004, 2020.

  35. Beard BC, Trobridge GD, Ironside C, McCune JS, Adair JE, Kiem HP. Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates. J Clin Invest [Internet]. 2010 Jul 1 [cited 2020 Nov 3];120(7):2345–54. Available from: https://pubmed.ncbi.nlm.nih.gov/20551514/

  36. Ochoa Z, Chatterji U, Bobardt M, Mendicino M, Dybul M, Hardy WD. Wenshi Joseph Ramesh Spriha Increased Engraftment of Gene Modified HSPCs Overexpressing ALDH1 in vivo. 1(Figure 3):164.

  37. Peterson, C. W., Wang, J., Norman, K. K., Norgaard, Z. K., Humbert, O., Tse, C. K., Yan, J. J., Trimble, R. G., Shivak, D. A., Rebar, E. J., Gregory, P. D., Holmes, M. C., & Kiem, H. P. (2016). Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood., 127(20), 2416–2426.

    Article  CAS  Google Scholar 

  38. Mussolino, C., Morbitzer, R., Lütge, F., Dannemann, N., Lahaye, T., & Cathomen, T. (2011 Nov). A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research, 39(21), 9283–9293.

    Article  CAS  Google Scholar 

  39. Ru R, Yao Y, Yu S, Yin B, Xu W, Zhao S, et al. Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen. 2013 Jun 18;2(1):2:5.

  40. Mock, U., MacHowicz, R., Hauber, I., Horn, S., Abramowski, P., Berdien, B., et al. (2015). mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Research, 43(11).

  41. Shi B, Li J, Shi X, Jia W, Wen Y, Hu X, et al. TALEN-mediated knockout of CCR5 confers protection against infection of human immunodeficiency virus. JAIDS J Acquir Immune Defic Syndr [Internet]. 2017 Feb 1 [cited 2020 May 7];74(2):229–41. Available from: http://journals.lww.com/00126334-201702010-00018

  42. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science (80- ), 339(6121), 823–826.

    Article  CAS  Google Scholar 

  43. Vogel, P., Schneider, M. F., Wettengel, J., & Stafforst, T. (2014). Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA. Angewandte Chemie, International Edition, 53(24), 6267–6271.

    Article  CAS  Google Scholar 

  44. Basila, M., Kelley, M. L., & Smith, A. V. B. (2017). Minimal 2’-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. PLoS One, 12(11), 1–19.

    Article  Google Scholar 

  45. Ling, X., Xie, B., Gao, X., Chang, L., Zheng, W., Chen, H., et al. (2020). Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Science Advances, 6(15), 1–9.

    Article  Google Scholar 

  46. Renaud, J. B., Boix, C., Charpentier, M., De Cian, A., Cochennec, J., Duvernois-Berthet, E., et al. (2016). Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Reports, 14(9), 2263–2272.

    Article  CAS  Google Scholar 

  47. Mandal, P. K., Ferreira, L. M. R., Collins, R., Meissner, T. B., Boutwell, C. L., Friesen, M., Vrbanac, V., Garrison, B. S., Stortchevoi, A., Bryder, D., Musunuru, K., Brand, H., Tager, A. M., Allen, T. M., Talkowski, M. E., Rossi, D. J., & Cowan, C. A. (2014 Nov 6). Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell, 15(5), 643–652.

    Article  CAS  Google Scholar 

  48. Nerys-Junior, A., Braga-Dias, L. P., Pezzuto, P., Cotta-de-Almeida, V., & Tanuri, A. (2018). Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene. Genetics and Molecular Biology, 41(1).

  49. Li, C., Guan, X., Du, T., Jin, W., Wu, B., Liu, Y., et al. (2015). Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. The Journal of General Virology, 96(8), 2381–2393.

    Article  CAS  Google Scholar 

  50. Xiao, Q., Chen, S., Wang, Q., Liu, Z., Liu, S., Deng, H., et al. (2019). CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4+ T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4+ T cell enrichment in humanized mice. Retrovirology [internet]. 2019;16(1):1–17. Available from. https://doi.org/10.1186/s12977-019-0477-y.

  51. Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, et al. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Mol Ther [Internet]. 2017 Aug 2 [cited 2019 Mar 12];25(8):1782–9. Available from: https://www.sciencedirect.com/science/article/pii/S1525001617302137?via%3Dihub

  52. Yu, S., Ou, Y., Xiao, H., Li, J., Adah, D., Liu, S., Zhao, S., Qin, L., Yao, Y., & Chen, X. (2020 Jun 12). Experimental treatment of SIV-infected macaques via autograft of CCR5-disrupted hematopoietic stem and progenitor cells. Mol Ther - Methods Clin Dev., 17, 520–531.

    Article  CAS  Google Scholar 

  53. Re, A., Cattaneo, C., Skert, C., Balsalobre, P., Michieli, M., Bower, M., Ferreri, A. J. M., Hentrich, M., Ribera, J. M., Allione, B., Schommers, P., Montoto, S., Almici, C., Ferremi, P., Mazzucato, M., Gattillo, S., Casari, S., Spina, M., Diez-Martin, J. L., Tirelli, U., Rossi, G., & on the behalf of GECAT (Cooperative European Group on AIDS and Tumors). (2013). Stem cell mobilization in HIV seropositive patients with lymphoma. Haematologica., 98(11), 1762–1768.

    Article  Google Scholar 

  54. Schooley, R. T., Mladenovic, J., Sevin, A., Chiu, S., Miles, S. A., Pomerantz, R. J., Campbell, T. B., Bell, D., Ambruso, D., Wong, R., Landay, A., Coombs, R. W., Fox, L., Kamoun, M., Jacovini, J., & AIDS Clinical Trials Group 285 Study Team. (2000). Reduced mobilization of CD34+ stem cells in advanced human immunodeficiency virus type 1 disease. The Journal of Infectious Diseases, 181(1), 148–157.

    Article  CAS  Google Scholar 

  55. Xu, L., Wang, J., Liu, Y., Xie, L., Su, B., Mou, D., Wang, L., Liu, T., Wang, X., Zhang, B., Zhao, L., Hu, L., Ning, H., Zhang, Y., Deng, K., Liu, L., Lu, X., Zhang, T., Xu, J., Li, C., Wu, H., Deng, H., & Chen, H. (2019). CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. The New England Journal of Medicine, 381(13), 1240–1247.

    Article  CAS  Google Scholar 

  56. Nie, Y., Han, Y. C., & Zou, Y. R. (2008). CXCR4 is required for the quiescence of primitive hematopoietic cells. The Journal of Experimental Medicine, 205(4), 777–783.

    Article  CAS  Google Scholar 

  57. Baxter, A. E., Russell, R. A., Duncan, C. J. A., Moore, M. D., Willberg, C. B., Pablos, J. L., Finzi, A., Kaufmann, D. E., Ochsenbauer, C., Kappes, J. C., Groot, F., & Sattentau, Q. J. (2014). Macrophage infection via selective capture of HIV-1-infected CD4+ T cells. Cell Host & Microbe, 16(6), 711–721.

    Article  CAS  Google Scholar 

  58. Mack, M., Kleinschmidt, A., Brühl, H., Klier, C., Nelson, P. J., Cihak, J., Plachý, J., Stangassinger, M., Erfle, V., & Schlöndorff, D. (2000 Jul). Transfer of the chemokine receptor CCR5 between cells by membrane- derived microparticles: A mechanism for cellular human immunodeficiency virus 1 infection. Nature Medicine, 6(7), 769–775.

    Article  CAS  Google Scholar 

  59. Qing R, Tao F, Chatterjee P, Schubert T, Blackburn C, Zhang S. Non-full-length Water-Soluble CXCR4 QTY and CCR5 QTY chemokine receptors: Implication for overlooked truncated but functional membrane receptors highlights Y2H screening reveals ligand interaction from truncated CXCR4 and CCR5 in QTY form. ISCIENCE [Internet]. 2020 [cited 2020 Oct 29];101670. Available from: https://doi.org/10.1016/j.isci.2020.101670.

  60. Kwon, K. J., Timmons, A. E., Sengupta, S., Simonetti, F. R., Zhang, H., Hoh, R., et al. (2020). Different human resting memory CD4+ T cell subsets show similar low inducibility of latent HIV-1 proviruses. Science Translational Medicine, 12(528), 1–14.

    Article  Google Scholar 

  61. Carter, C. C., McNamara, L. A., Onafuwa-Nuga, A., Shackleton, M., Riddell IV, J., Bixby, D., et al. (2011 Mar 17). HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent hematopoietic stem and progenitor cells. Cell Host & Microbe, 9(3), 223–234.

    Article  CAS  Google Scholar 

  62. McNamara, L. A., Onafuwa-Nuga, A., Sebastian, N. T., Riddell, J., Bixby, D., & Collins, K. L. (2013). CD133+ hematopoietic progenitor cells harbor HIV genomes in a subset of optimally treated people with long-term viral suppression. The Journal of Infectious Diseases, 207(12), 1807–1816.

    Article  Google Scholar 

  63. Sebastian, N. T., Zaikos, T. D., Terry, V., Taschuk, F., McNamara, L. A., Onafuwa-Nuga, A., et al. (2017). CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo. PLoS Pathogens, 13(7), 1–30.

    Article  Google Scholar 

  64. Kao, C. Y., & Papoutsakis, E. T. (2018). Engineering human megakaryocytic microparticles for targeted delivery of nucleic acids to hematopoietic stem and progenitor cells. Science Advances, 4(11).

  65. Olivetta, E., Chiozzini, C., Arenaccio, C., Manfredi, F., Ferrantelli, F., & Federico, M. (2020). Extracellular vesicle-mediated intercellular communication in HIV-1 infection and its role in the reservoir maintenance. Cytokine and Growth Factor Reviews. Elsevier Ltd, 51, 40–48.

  66. Malhotra D, Fletcher AL, Turley SJ. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunological Reviews [Internet]. 2013 Jan 1 [cited 2020 Apr 5];251(1):160–76. Available from: http://doi.wiley.com/10.1111/imr.12023

  67. Suryawanshi, G. W., Khamaikawin, W., Wen, J., Shimizu, S., Arokium, H., Xie, Y., et al. (2020). The clonal repopulation of HSPC gene modified with anti-HIV-1 RNAi is not affected by preexisting HIV-1 infection. Science Advances, 6(30), 1–14.

    Article  Google Scholar 

  68. Frangoul H, Altshuler D, Cappellini MD, Chen Y-S, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. The New England Journal of Medicine [Internet]. 2021 Jan 21 [cited 2021 Feb 12];384(3):252–60. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2031054

  69. Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S., & Yang, S. H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Vol. 4, Molecular Therapy - Nucleic Acids. Nature Publishing Group, e264.

  70. Agarwal, R., Dvorak, C. C., Kwon, H.-S., Long-Boyle, J. R., Prohaska, S. S., Brown, J. W., et al. (2019 Nov 13). Non-genotoxic anti-CD117 antibody conditioning results in successful hematopoietic stem cell engraftment in patients with severe combined immunodeficiency. Blood, 134(Supplement_1), 800–800.

    Article  Google Scholar 

  71. Radtke, S., Adair, J. E., Giese, M. A., Chan, Y. Y., Norgaard, Z. K., Enstrom, M., et al. (2017). A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates. Science Translational Medicine, 9(414).

  72. Humbert O, Radtke S, Samuelson C, Carrillo RR, Perez AM, Reddy SS, et al. Therapeutically relevant engraftment of a CRISPR-Cas9–edited HSC-enriched population with HbF reactivation in nonhuman primates. Science Translational Medicine [Internet]. 2019;11(503):eaaw3768. Available from: http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaw3768

  73. Radtke, S., Pande, D., Cui, M., Perez, A. M., Chan, Y.-Y., Enstrom, M., et al. (2020 Jan 21). Sort-purification of human CD34+CD90+ cells reduces target cell population and improves lentiviral transduction for gene therapy. bioRxiv, 850479.

Download references

Acknowledgements

This work was supported by Department of Biotechnology, Government of India. K.V.K is supported by fellowship from Department of Science and Technology- Innovation in Science Pursuit for Inspired Research - (IF180918) (DST-INSPIRE) and PB is supported by Junior Research Fellowship from Council of Scientific and Industrial Research (CSIR).

Funding

Department of Biotechnology, Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

K.V.K, P.B and ST drafted the study, executed the literature search and manuscript writing. This version of the manuscript is approved by all the three authors.

Corresponding author

Correspondence to Saravanabhavan Thangavel.

Ethics declarations

Not applicable.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppusamy, K.V., Babu, P. & Thangavel, S. The Strategies and Challenges of CCR5 Gene Editing in Hematopoietic Stem and Progenitor Cells for the Treatment of HIV. Stem Cell Rev and Rep 17, 1607–1618 (2021). https://doi.org/10.1007/s12015-021-10145-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10145-7

Keywords

Navigation