Skip to main content
Log in

Signaling Network Centered on mTORC1 Dominates Mammalian Intestinal Stem Cell Ageing

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The intestine integrates the function of digestion, absorption, and barrier, which is easily damaged by the external factors upon ageing. The intestinal stem cells (ISCs) exist at the intestinal crypt base and play an indispensable role in intestinal homeostasis and regeneration. The intestine ageing contributes to malabsorption and other associated illnesses, which were considered to be related to ISCs. Here, we summarize the current research progress of mammalian ISCs ageing and pay more attention to the central regulatory role of the mTORC1 signaling pathway in regulating mammalian ISCs ageing, and its related AMPK, FOXO, Wnt signaling pathways. Furthermore, we also discuss the interventions aimed at mTORC1 and its associated signaling pathways, which may provide potential strategies for rejuvenating aged ISCs and the therapy of age-related intestinal diseases.

Many signaling pathways are altered in the ageing ISCs, thereby inducing the decrease of ISC self-renewal, differentiation, and regeneration, an increasing of oxidative stress may contribute to damage to the ISCs. Interventions such as calorie restriction, fasting and so on can effectively alleviate these adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barker, N., Van Es, J. H., Kuipers, J., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449, 1003–1007.

    CAS  PubMed  Google Scholar 

  2. Rizk, P., & Barker, N. (2012). Gut stem cells in tissue renewal and disease: Methods, markers, and myths. Wiley Interdisciplinary Reviews Systems Biology and Medicine, 4, 475–496.

    CAS  PubMed  Google Scholar 

  3. Sangiorgi, E., & Capecchi, M. R. (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nature Genetics, 40, 915–920.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, C. M., Yan, H. C., Fu, H. L., Xu, G. F., & Wang, X. Q. (2014). Molecular cloning, sequence analysis, and function of the intestinal epithelial stem cell marker Bmi1 in pig intestinal epithelial cells. Journal of Animal Science, 92(1), 85–94.

    CAS  PubMed  Google Scholar 

  5. Li, X. G., Wang, Z., Chen, R. Q., Fu, H. L., Gao, C. Q., Yan, H. C., Xing, G. X., & Wang, X. Q. (2018). LGR5 and BMI1 increase pig intestinal epithelial cell proliferation by stimulating WNT/β-catenin signaling. International Journal of Molecular Science, 19(4), 1036.

    Google Scholar 

  6. Smith, N. R., Swain, J. R., Davies, P. S., Gallagher, A. C., Parappilly, M. S., Beach, C. Z., Streeter, P. R., Williamson, I. A., Magness, S. T., & Wong, M. H. (2018). Monoclonal antibodies reveal dynamic plasticity between Lgr5- and Bmi1-expressing intestinal cell populations. Cellular & Molecular Gastroenterology & Hepatology, 6(1), 79–96.

    Google Scholar 

  7. Yin, X. L., Farin, H. F., van Es, J. H., et al. (2014). Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nature Methods, 11, 106–112.

    CAS  PubMed  Google Scholar 

  8. Li, X. G., Zhu, M., Chen, M. X., Fan, H. B., Fu, H. L., Zhou, J. Y., Zhai, Z. Y., Gao, C. Q., Yan, H. C., & Wang, X. Q. (2019). Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway. Toxicology Letter, 305, 19–31.

    CAS  Google Scholar 

  9. Liang, S. J., Li, X. G., & Wang, X. Q. (2019). Notch signaling in mammalian intestinal stem cells: Determining cell fate and maintaining homeostasis. Current Stem Cell Research & Therapy, 14(7), 583–590.

    CAS  Google Scholar 

  10. Zhou, J. Y., Wang, Z., Zhang, S. W., Lin, H. L., Gao, C. Q., Zhao, J. C., Yang, C., & Wang, X. Q. (2019). Methionine and its hydroxyl analogs improve stem cell activity to eliminate deoxynivalenol-induced intestinal injury by reactivating Wnt/β-catenin signaling. Journal of Agricultural and Food Chemistry, 67, 11464–11473.

    CAS  PubMed  Google Scholar 

  11. Zhou, J. Y., Huang, D. G., Qin, Y. C., Li, X. G., Gao, C. Q., Yan, H. C., & Wang, X. Q. (2019). mTORC1 signaling activation increases intestinal stem cell activity and promotes epithelial cell proliferation. Journal of Cellular Physiology, 234(10), 19028–19038.

    CAS  PubMed  Google Scholar 

  12. Zhou, J. Y., Zhang, S. W., Lin, H. L., Gao, C. Q., Yan, H. C., & Wang, X. Q. (2019). Hydrolyzed wheat gluten alleviates deoxynivalenol-induced intestinal injury by promoting intestinal stem cell proliferation and differentiation via upregulation of Wnt/β-catenin signaling in mice. Food and Chemical Toxicology, 131, 110579.

    CAS  PubMed  Google Scholar 

  13. Zhou, J. Y., Lin, H. L., Wang, Z., Zhang, S. W., Huang, D. G., Gao, C. Q., Yan, H. C., & Wang, X. Q. (2020). Zinc L-aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against deoxynivalenol through activation of the Wnt/β-catenin signaling pathway. Environmental Pollution, 262, 114290.

    CAS  PubMed  Google Scholar 

  14. Tian, H., Biehs, B., Chiu, C., Siebel, C. W., Wu, Y., Costa, M., de Sauvage, F. J., & Klein, O. D. (2015). Opposing activities of notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Reports, 11(1), 33–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lukonin, I., Serra, D., Challet, M. L., et al. (2020). Phenotypic landscape of intestinal organoid regeneration. Nature, 586, 275–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McHugh, D., & Gil, J. (2017). Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 217(1), 65–77.

    Google Scholar 

  17. Lópezotín, C., Blasco, M. A., Partridge, L., et al. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217.

    Google Scholar 

  18. Paradies, G., Petrosillo, G., Paradies, V., & Ruggiero, F. M. (2010). Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radical Biology & Medicine, 48(10), 1286–1295.

    CAS  Google Scholar 

  19. O'Sullivan, R. J., & Karlseder, J. (2010). Telomeres: Protecting chromosomes against genome instability. Nature Reviews Molecular Cell Biology, 11, 171–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schepers, A. G., Vries, R., van den Born, M., et al. (2014). Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO Journal, 30(6), 1104–1109.

    Google Scholar 

  21. Martin, K., Kirkwood, T. B. L., & Potten, C. S. (1998). Age changes in stem cells of murine small intestinal crypts. Clinical Science, 241(2), 316–323.

    CAS  Google Scholar 

  22. Ren, W. Y., Wu, K. F., Li, X., Luo, M., Liu, H. C., Zhang, S. C., & Hu, Y. (2014). Age-related changes in small intestinal mucosa epithelium architecture and epithelial tight junction in rat models. Aging Clinical & Experimental Research, 26(2), 183–191.

    Google Scholar 

  23. Gebert, N., Cheng, C. W., Kirkpatrick, J. M., di Fraia, D., Yun, J., Schädel, P., Pace, S., Garside, G. B., Werz, O., Rudolph, K. L., Jasper, H., Yilmaz, Ö. H., & Ori, A. (2020). Region-specific proteome changes of the intestinal epithelium during aging and dietary restriction. Cell Reports, 31(4), 107565.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mabbott, N. A. (2015). A breakdown in communication? Understanding the effects of aging on the human small intestine epithelium. Clinical Science, 129(7), 529–531.

    CAS  PubMed  Google Scholar 

  25. Man, A. L., Bertelli, E., Rentini, S., Regoli, M., Briars, G., Marini, M., Watson, A. J. M., & Nicoletti, C. (2015). Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clinical Science, 129(7), 515–527.

    CAS  PubMed  Google Scholar 

  26. Woudstra, T., & Thomson, A. B. R. (2002). Nutrient absorption and intestinal adaptation with ageing. Best Practice & Research Clinical Gastroenterology, 16(1), 1–15.

    Google Scholar 

  27. Yamamoto, K., Kitano, Y., Shuang, E., et al. (2014). Decreased lipid absorption due to reduced pancreatic lipase activity in aging male mice. Biogerontology., 15(5), 463–473.

    CAS  PubMed  Google Scholar 

  28. Schultz, M. B., & Sinclair, D. A. (2016). When stem cells grow old: Phenotypes and mechanisms of stem cell aging. Development, 143(1), 3–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Moorefield, E. C., Andres, S. F., Eric, B. R., et al. (2017). Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging, 9, 1898–1915.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. He, D., Wu, H., Xiang, J., et al. (2020). Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nature Communications, 11(1), 397–408.

    Google Scholar 

  31. Jiahn, C., Nikolai, R., Poornima, G., et al. (2018). Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging. Scientific Reports, 8(1), 10989.

    Google Scholar 

  32. Lewis, S. K., Nachun, D., Martin, M. G., Horvath, S., Coppola, G., & Jones, D. L. (2020). DNA methylation analysis validates Organoids as a viable model for studying human intestinal aging. Cellular and Molecular Gastroenterology and Hepatology, 9(3), 527–541.

    PubMed  Google Scholar 

  33. Martin, K., Potten, C. S., Roberts, S. A., et al. (1998). Altered stem cell regeneration in irradiated intestinal crypts of senescent mice. Journal of Cell Science, 111(16), 2297–2303.

    CAS  PubMed  Google Scholar 

  34. Sandström, O., & El-Salhy, M. (1999). Ageing and endocrine cells of human duodenum. Mechanisms of Ageing & Development, 108(1), 39–48.

    Google Scholar 

  35. Sandström, O., Mahdavi, J., & El-Salhy, M. (1998). Effect of ageing on colonic endocrine cell population in mouse. Gerontology, 44(6), 324–330.

    PubMed  Google Scholar 

  36. Zhu, M., & Wang, X. Q. (2020). Regulation of mTORC1 by small GTPases in response to nutrients. The Journal of Nutrition, 150(5), 1004–1011.

    PubMed  Google Scholar 

  37. Sampson, L. L., Davis, A. K., Grogg, M. W., & Zheng, Y. (2016). mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice. FASEB Journal, 30(3), 1263–1275.

    CAS  PubMed  Google Scholar 

  38. Zhu, M., Qin, Y. C., Gao, C. Q., Yan, H. C., Li, X. G., & Wang, X. Q. (2019). Extracellular glutamate-induced mTORC1 activation via the IR/IRS/PI3K/Akt pathway enhances the expansion of porcine intestinal stem cells. Journal of Agricultural & Food Chemistry, 67(34), 9510–9521.

    CAS  Google Scholar 

  39. Zhu, M., Qin, Y. C., Gao, C. Q., Yan, H. C., & Wang, X. Q. (2020). L-glutamate drives porcine intestinal epithelial renewal by increasing stem cell activity via upregulation of the EGFR-ERK-mTORC1 pathway. Food & Function, 11(3), 2714–2724.

    CAS  Google Scholar 

  40. Johnson, S. C., Rabinovitch, P. S., & Kaeberlein, M. (2013). mTOR is a key modulator of ageing and age-related disease. Nature, 493(7432), 338–345.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. de Oliveira, B. M., Cirilo, C. P., de Santi-Rampazzo, A. P., et al. (2015). Intestinal morphology adjustments caused by dietary restriction improves the nutritional status during the aging process of rats. Experimental Gerontology, 69, 85–93.

    Google Scholar 

  42. Garratt, M., Nakagawa, S., & Simons, M. J. P. (2016). Comparative idiosyncrasies in life extension by reduced mTOR signalling and its distinctiveness from dietary restriction. Aging Cell, 15(4), 737–743.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., & Miller, R. A. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460(7253), 392–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fontana, L., & Partridge, L. (2015). Promoting health and longevity through diet, from model organisms to humans. Cell, 161(1), 106–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Leonie, K. H., & Eric, R. (2003). Calorie restriction and aging: Review of the literature and implications for studies in humans. American Journal of Clinical Nutrition, 78(3), 361–369.

    Google Scholar 

  46. Yilmaz, Ö. H., Katajisto, P., Lamming, D. W., Gültekin, Y., Bauer-Rowe, K. E., Sengupta, S., Birsoy, K., Dursun, A., Yilmaz, V. O., Selig, M., Nielsen, G. P., Mino-Kenudson, M., Zukerberg, L. R., Bhan, A. K., Deshpande, V., & Sabatini, D. M. (2012). mTORC1 in the Paneth cell niche couples intestinal stem cell function to calorie intake. Nature, 486(7404), 490–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Igarashi, M., & Guarente, L. (2016). mTORC1 and SIRT1 cooperate to Foster expansion of gut adult stem cells during calorie restriction. Cell, 166(2), 436–450.

    CAS  PubMed  Google Scholar 

  48. Yousefi, M., Nakauka-Ddamba, A., Berry, C. T., Li, N., Schoenberger, J., Simeonov, K. P., Cedeno, R. J., Yu, Z., & Lengner, C. J. (2018). Calorie restriction governs intestinal epithelial regeneration through cell-autonomous regulation of mTORC1 in reserve stem cells. Stem Cell Reports, 10(3), 703–711.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dan, N., Samson, S. L., Reddy, V. T., et al. (2013). Impaired mitochondrial fatty acid oxidation and insulin resistance in aging, novel protective role of glutathione. Aging Cell, 12(3), 415–425.

    Google Scholar 

  50. Mihaylova, M. M., Cheng, C. W., Cao, A. Q., Tripathi, S., Mana, M. D., Bauer-Rowe, K. E., Abu-Remaileh, M., Clavain, L., Erdemir, A., Lewis, C. A., Freinkman, E., Dickey, A. S., la Spada, A. R., Huang, Y., Bell, G. W., Deshpande, V., Carmeliet, P., Katajisto, P., Sabatini, D. M., & Yilmaz, Ö. H. (2018). Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell, 22(5), 769–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Richmond, C. A., Shah, M. S., Deary, L. T., et al. (2015). Dormant intestinal stem cells are regulated by PTEN and nutritional status. Cell Reports, 3(11), 2403–2411.

    Google Scholar 

  52. Song, M. S., Salmena, L., & Pandolfi, P. P. (2012). The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 13(5), 8136–8147.

    Google Scholar 

  53. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E., & Shaw, R. J. (2008). AMPK phosphorylation of raptor 375 mediates a metabolic checkpoint. Molecular Cell, 30(2), 214–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cantó, C., Gerhart-Hines, Z., Feige, J., et al. (2009). AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity. Nature, 458, 1056–1060.

    PubMed  PubMed Central  Google Scholar 

  55. Carling, D. (2004). The AMP-activated protein kinase cascade – A unifying system for energy control. Trends in Biochemical Sciences, 29(1), 18–24.

    CAS  PubMed  Google Scholar 

  56. Guarente, L. (2013). Calorie restriction and sirtuins revisited. Genes & Development, 27(19), 2072–2085.

    CAS  Google Scholar 

  57. Wang, Y., Liang, Y., & Vanhoutte, P. M. (2011). SIRT1 and AMPK in regulating mammalian senescence: A critical review and a working model. FEBS Letters, 585(7), 986–994.

    CAS  PubMed  Google Scholar 

  58. Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z., & Cohen, H. Y. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature, 483(7388), 218–221.

    CAS  PubMed  Google Scholar 

  59. Mitchell, S. J., Martin-Montalvo, A., Mercken, E. M., Palacios, H. H., Ward, T. M., Abulwerdi, G., Minor, R. K., Vlasuk, G. P., Ellis, J. L., Sinclair, D. A., Dawson, J., Allison, D. B., Zhang, Y., Becker, K. G., Bernier, M., & de Cabo, R. (2014). The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Reports, 6(5), 836–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Satoh, A., Brace, C. S., Ben-Josef, G., West, T., Wozniak, D. F., Holtzman, D. M., Herzog, E. D., & Imai, S. I. (2010). SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. Journal of Neuroscience, 30, 10220–10232.

    CAS  PubMed  Google Scholar 

  61. Igarashi, M., Miura, M., Williams, E. O., et al. (2019). NAD+ supplementation rejuvenates aged gut adult stem cells. Aging Cell, 18(3), e12935.

    PubMed  PubMed Central  Google Scholar 

  62. Uchida, R., Saito, Y., Nogami, K., Kajiyama, Y., Suzuki, Y., Kawase, Y., Nakaoka, T., Muramatsu, T., Kimura, M., & Saito, H. (2018). Epigenetic silencing of Lgr5 induces senescence of intestinal epithelial organoids during the process of aging. NPJ Aging Mechanisms and Disease, 4, 12.

    Google Scholar 

  63. Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds. Nature Reviews Molecular Cell Biology, 17(11), 679–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Eijkelenboom, A., & Burgering, B. M. T. (2013). FOXOs: Signalling integrators for homeostasis maintenance. Nature Reviews Molecular Cell Biology, 14(2), 83–97.

    CAS  PubMed  Google Scholar 

  65. Martins R., Lithgow G .J. and Link W. (2016). Long live FOXO: Unraveling the role of FOXO proteins in aging and longevity. Aging Cell, 15(2), 196–207.

  66. Kim, D. H., Park, M. H., Lee, E. K., Choi, Y. J., Chung, K. W., Moon, K. M., Kim, M. J., An, H. J., Park, J. W., Kim, N. D., Yu, B. P., & Chung, H. Y. (2015). The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology, 16, 1–14.

    PubMed  Google Scholar 

  67. Yamaza, H., Komatsu, T., Wakita, S., et al. (2010). FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell, 36(1), 372–382.

    Google Scholar 

  68. Shimokawa, I., Komatsu, T., Hayashi, N., Kim, S. E., Kawata, T., Park, S., Hayashi, H., Yamaza, H., Chiba, T., & Mori, R. (2015). The life-extending effect of dietary restriction requires Foxo3 in mice. Aging Cell, 14(4), 707–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tothova, Z., Kollipara, R., Huntly, B. J., Lee, B. H., Castrillon, D. H., Cullen, D. E., McDowell, E. P., Lazo-Kallanian, S., Williams, I. R., Sears, C., Armstrong, S. A., Passegué, E., DePinho, R. A., & Gilliland, D. G. (2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell, 128(2), 325–339.

    CAS  PubMed  Google Scholar 

  70. Cirilo, C. P., Schoffen, J., De Santi-Rampazzo, A. P., et al. (2013). Dietary restriction interferes with oxidative status and intrinsic intestinal innervation in aging rats. Nutrition, 29(4), 673–680.

    CAS  PubMed  Google Scholar 

  71. Grattagliano, I., Portincasa, P., Cocco, T., Moschetta, A., di Paola, M., Palmieri, V. O., & Palasciano, G. (2004). Effect of dietary restriction and N-acetylcysteine supplementation on intestinal mucosa and liver mitochondrial redox status and function in aged rats. Experimental Gerontology, 39(9), 1323–1332.

    CAS  PubMed  Google Scholar 

  72. Liu, L., & Rando, T. A. (2011). Manifestations and mechanisms of stem cell aging. Journal of Cell Biology, 193(2), 257–266.

    CAS  Google Scholar 

  73. Zhou, J. Y., Huang, D. G., Zhu, M., Gao, C. Q., Yan, H. C., Li, X. G., & Wang, X. Q. (2020). Wnt/β-catenin-mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress. Journal of Cellular Physiology, 235, 5613–5627.

    CAS  PubMed  Google Scholar 

  74. Fan, H. B., Zhai, Z. Y., Li, X. G., Gao, C. Q., Yan, H. C., Chen, Z. S., & Wang, X. Q. (2017). CDX2 stimulates the proliferation of porcine intestinal epithelial cells by activating the mTORC1 and Wnt/β-catenin signaling pathways. International Journal of Molecular Sciences, 18(11), 2447.

    PubMed Central  Google Scholar 

  75. Tao, S., Tang, D., Morita, Y., Sperka, T., Omrani, O., Lechel, A., Sakk, V., Kraus, J., Kestler, H. A., Kühl, M., & Rudolph, K. L. (2015). Wnt activity and basal niche position sensitize intestinal stem and progenitor cells to DNA damage. EMBO Journal, 34(5), 624–640.

    CAS  Google Scholar 

  76. Nalapareddy, K., Nattamai, K. J., Kumar, R. S., et al. (2018). Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Reports, 18(11), 2608–2621.

    Google Scholar 

  77. Cui, H., Tang, D., Garside, G. B., Zeng, T., Wang, Y., Tao, Z., Zhang, L., & Tao, S. (2019). Wnt signaling mediates the aging-induced differentiation impairment of intestinal stem cells. Stem Cell Reviews and Reports, 15(3), 448–455.

    CAS  PubMed  Google Scholar 

  78. Pentinmikko, N., Iqbal, S., Mana, M., Andersson, S., Cognetta III, A. B., Suciu, R. M., Roper, J., Luopajärvi, K., Markelin, E., Gopalakrishnan, S., Smolander, O. P., Naranjo, S., Saarinen, T., Juuti, A., Pietiläinen, K., Auvinen, P., Ristimäki, A., Gupta, N., Tammela, T., Jacks, T., Sabatini, D. M., Cravatt, B. F., Yilmaz, Ö. H., & Katajisto, P. (2019). Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature, 571, 398–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kakugawa, S., Langton, P. F., Zebisch, M., Howell, S. A., Chang, T. H., Liu, Y., Feizi, T., Bineva, G., O’Reilly, N., Snijders, A. P., Jones, E. Y., & Vincent, J. P. (2015). Notum deacylates Wnt proteins to suppress signalling activity. Nature, 519(7542), 187–192.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cruciat, C. M., & Niehrs, C. (2013). Secreted and Transmembrane Wnt inhibitors and activators. Cold Spring Harbor Perspectives in Biology, 5(3), 313–314.

    Google Scholar 

  81. Ashton, G. H., Morton, J. P., Myant, K., et al. (2010). Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. Developmental Cell, 2, 259–269.

    Google Scholar 

  82. Pan, H., & Finkel, T. (2017). Key proteins and pathways that regulate lifespan. Journal of Biological Chemistry, 292(16), 6452–6460.

    CAS  Google Scholar 

  83. Conboy, I. M., Conboy, M. J., Smythe, G. M., & Rando, T. A. (2003). Notch-mediated restoration of regenerative potential to aged muscle. Science, 302(5650), 1575–1577.

    CAS  PubMed  Google Scholar 

  84. Renault, V. M., Rafalski, V. A., Morgan, A. A., et al. (2009). FoxO3 Regulates Neural Stem Cell Homeostasis. Cell Stem Cell, 5(5), 540–553.

    Google Scholar 

  85. Myant, K. B., Cammareri, P., Mcghee, E. J., et al. (2013). ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal Cancer initiation. Cell Stem Cell, 12(6), 761–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Paul, M. K., Bisht, B., Darmawan, D. O., et al. (2014). Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent notch signaling. Cell Stem Cell, 5(2), 199–214.

    Google Scholar 

  87. O'Toole, P. W., & Jeffery, I. B. (2015). Gut microbiota and aging. Science, 350(6265), 1214–1215.

    CAS  PubMed  Google Scholar 

  88. Thevaranjan, N., Puchta, A., & Schulz, C. (2018). Age-associated microbial Dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host & Microbe, 23(4), 455–466.

    Google Scholar 

  89. Deng, F. L., Li, Y., & Zhao, J. C. (2019). The gut microbiome of healthy long-living people. Aging, 11(2), 289–290.

    PubMed  PubMed Central  Google Scholar 

  90. Sivamaruthi, B. S., Kesika, P., & Chaiyasut, C. (2018). A review on anti-aging properties of probiotics. International Journal of Applied Pharmaceutics, 10(5), 23–27.

    CAS  Google Scholar 

  91. Martinez-Jimenez, C. P., Eling, N., Chen, H. C., Vallejos, C. A., Kolodziejczyk, A. A., Connor, F., Stojic, L., Rayner, T. F., Stubbington, M. J. T., Teichmann, S. A., de la Roche, M., Marioni, J. C., & Odom, D. T. (2017). Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science, 355(6332), 1433–1436.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, S., Zheng, Y., Li, J., Yu, Y., Zhang, W., Song, M., Liu, Z., Min, Z., Hu, H., Jing, Y., He, X., Sun, L., Ma, L., Esteban, C. R., Chan, P., Qiao, J., Zhou, Q., Izpisua Belmonte, J. C., Qu, J., Tang, F., & Liu, G. H. (2020). Single-cell Transcriptomic atlas of primate ovarian aging. Cell, 180(3), 585–600.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2016YFD0500501), the National Natural Science Foundation of China (31872389, 32072777), the Basic and Applied Basic Research Foundation of Guangdong Province (2019B1515210021).

Author information

Authors and Affiliations

Authors

Contributions

Xiu-qi Wang had the idea for the article, Shao-jie Liang performed the literature search and finished the manuscript, Jia-yi Zhou critically revised the work.

Corresponding author

Correspondence to Xiu-qi Wang.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Sj., Zhou, Jy. & Wang, Xq. Signaling Network Centered on mTORC1 Dominates Mammalian Intestinal Stem Cell Ageing. Stem Cell Rev and Rep 17, 842–849 (2021). https://doi.org/10.1007/s12015-020-10073-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10073-y

Keywords

Navigation