Skip to main content
Log in

Isolation, Characterization and Differentiation Potential of Cardiac Progenitor Cells in Adult Pigs

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

An Erratum to this article was published on 13 March 2012

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Romero-Corral, A., Somers, V. K., Korinek, J., Sierra-Johnson, J., Thomas, R. J., Allison, T. G., et al. (2006). Update in prevention of atherosclerotic heart disease: Management of major cardiovascular risk factors. Revista de Investigación Clínica, 58, 237–244.

    PubMed  Google Scholar 

  2. Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. (2006). Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet, 367, 1747–1757.

    Article  PubMed  Google Scholar 

  3. Gaziano, T. A., Bitton, A., Anand, S., Abrahams-Gessel, S., & Murphy, A. (2010). Growing epidemic of coronary heart disease in low- and middle-income countries. Current Problems in Cardiology, 35, 72–115.

    Article  PubMed  Google Scholar 

  4. Galvez, B. G., Covarello, D., Tolorenzi, R., Brunelli, S., Dellavalle, A., Crippa, S., et al. (2009). Human cardiac mesoangioblasts isolated from hypertrophic cardiomyopathies are greatly reduced in proliferation and differentiation potency. Cardiovascular Research, 83, 707–716.

    Article  PubMed  CAS  Google Scholar 

  5. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabé-Hieder, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.

    Article  PubMed  CAS  Google Scholar 

  6. Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., & Molkentin, J. D. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13, 970–974.

    Article  PubMed  CAS  Google Scholar 

  7. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.

    Article  PubMed  CAS  Google Scholar 

  8. Rota, M., Padin-Iruegas, M. E., Misao, Y., De Angelis, A., Maestroni, S., et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103, 107–116.

    Article  PubMed  CAS  Google Scholar 

  9. Laugwitz, K. L., Moretti, A., Caron, L., Nakano, A., & Chien, K. R. (2008). Islet1 cardiovascular progenitors: A single source for heart lineages? Development, 135, 193–205.

    Article  PubMed  CAS  Google Scholar 

  10. Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., et al. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry, 279, 11384–11391.

    Article  PubMed  CAS  Google Scholar 

  11. Oh, H., Bradfute, S., Gallardo, T., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.

    Article  PubMed  CAS  Google Scholar 

  12. Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., et al. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118, 498–506.

    Article  PubMed  Google Scholar 

  13. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103, 1204–1219.

    Article  PubMed  CAS  Google Scholar 

  14. Urbanek, K., Torella, D., Sheikh, F., Angelis, A. D., Nurzynska, D., Silvestri, F., et al. (2005). Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 102, 8692–8697.

    Article  PubMed  CAS  Google Scholar 

  15. Minasi, M., Riminucci, M., Angelis, L. D., Borello, U., Berarducci, B., Innocenzi, A., et al. (2002). The meso-angioblast: A multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development, 129, 2773–2783.

    PubMed  CAS  Google Scholar 

  16. Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9, 255–267.

    Article  PubMed  CAS  Google Scholar 

  17. Galvez, B. G., Sampaolesi, M., Barbuti, A., Crespi, A., Covarello, D., Brunelli, S., et al. (2008). Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death and Differentiation, 15, 1417–1428.

    Article  PubMed  CAS  Google Scholar 

  18. Passier, R., Van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453, 322–329.

    Article  PubMed  CAS  Google Scholar 

  19. Gandolfi, F., Vanelli, A., Pennarossa, G., Rahaman, M., Acocella, F., & Brevini, T. A. L. (2011). Large animal models for cardiac stem cell therapies. Theriogenology, 75, 1416–1425.

    Article  PubMed  CAS  Google Scholar 

  20. Blankesteijn, W. M., Creemers, E., Lutgens, E., Cleutjens, J. P., Daemen, M. J., & Smith, J. F. (2001). Dynamics of cardiac wound healing following myocardial infarction: Observations in genetically altered mice. Acta Physiologica Scandinavica, 173, 75–82.

    Article  PubMed  CAS  Google Scholar 

  21. Stoker, M. E., Gerdes, A. M., & May, J. F. (1982). Regional differences in capillary density and myocyte size in the normal human heart. Anatomical Record, 202, 187–191.

    Article  PubMed  CAS  Google Scholar 

  22. Rakusan, K., & Nagai, J. (1994). Morphometry of arterioles and capillaries in hearts of senescent mice. Cardiovascular Research, 28, 969–972.

    Article  PubMed  CAS  Google Scholar 

  23. Dixon, J. A., & Spinale, F. G. (2009). Large animal models of heart failure: A critical link in the translation of basic science to clinical practice. Circulation. Heart Failure, 2, 262–271.

    Article  PubMed  Google Scholar 

  24. White, F. C., Roth, D. M., & Bloor, C. M. (1986). The pig as a model for myocardial ischemia and exercise. Laboratory Animal Science, 36, 351–356.

    PubMed  CAS  Google Scholar 

  25. Crick, S. J., Sheppard, M. N., Ho, S. Y., Gebstein, L., & Anderson, R. H. (1998). Anatomy of the pig heart: Comparisons with normal human cardiac structure. Journal of Anatomy, 193, 105–119.

    Article  PubMed  Google Scholar 

  26. Rodrigues, M., Silva, A. C., Águas, A. P., & Grande, N. R. (2005). The coronary circulation of the pig heart: Comparison with the human heart. European Journal of Anatomy, 9, 67–87.

    Google Scholar 

  27. Guiney, E. J. (1965). The pig as an experimental animal with particular reference to cardiovascular surgery. Irish Journal of Medical Science, 474, 273–280.

    Article  PubMed  CAS  Google Scholar 

  28. Bustad, L. K., & McClellan, R. O. (1966). Swine in biomedical research. Science, 152, 1526–1530.

    Article  PubMed  CAS  Google Scholar 

  29. Douglas, W. R. (1972). Of pigs and men and research: A review of applications and analogies of the pig, sus scrofa, in human medical research. Space Life Sciences, 3, 226–234.

    PubMed  CAS  Google Scholar 

  30. Hughes, H. C. Swine in cardiovascular research. Laboratory Animal Science, 36, 348–350.

  31. Weaver, M. E., Pantely, G. A., Bristow, J. D., & Ladley, H. D. (1986). A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovascular Research, 20, 907–917.

    Article  PubMed  CAS  Google Scholar 

  32. Torella, D., et al. (2007). Growth-factor-mediated cardiac stem cell activation in myocardial regeneration. Nature Clinical Practice. Cardiovascular Medicine, 4(Supplement 1), S46–S51.

    Article  PubMed  Google Scholar 

  33. Nadal-Ginard, B., Torella, D., & Ellison, G. (2006). Cardiovascular regenerative medicine at the crossroads. Clinical trials of cellular therapy must now be based on reliable experimental data from animals with characteristics similar to human’s. Revista Española de Cardiología, 59, 1175–1189.

    Article  PubMed  Google Scholar 

  34. Rossi, D. J., Jamieson, C. H., & Weissman, I. L. (2008). Stems cells and the pathways to aging and cancer. Cell, 132, 681–696.

    Article  PubMed  CAS  Google Scholar 

  35. Ellison, G. M., Torella, D., Dellegrottaglie, S., Perez-Martinez, C., Perez de Prado, A., et al. (2011). Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. Journal of the American College of Cardiology. doi:10.1016/j.jacc.2011.05.013.

  36. Zhou, B., & Pu, W. T. (2008). More than a cover: Epicardium as a novel source of cardiac progenitor cells. Regenerative Medicine, 3, 633–635.

    Article  PubMed  Google Scholar 

  37. Smart, N., & Riley, P. R. (2009). Derivation of epicardium-derived progenitor cells (EPDCs) form adult epicardium. Somatic Stem Cells, 2C.2.1 supplement 8.

  38. Smart, N., Bollini, S., Dubé, K. N., Vieira, J. M., Zhou, B., Davidson, S., et al. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature. doi:10.1038.

  39. Zhou, B., Ma, Q., Rajagopal, S., Wu, S. M., Domian, I., Rivera-Feliciano, J., et al. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 454, 109–113.

    Article  PubMed  CAS  Google Scholar 

  40. Limana, F., Zacheo, A., Mocini, D., Mangoni, A., Borsellino, G., Diamantini, A., et al. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circulation Research, 101, 1255–1265.

    Article  PubMed  CAS  Google Scholar 

  41. Torella, D., Ellison, G., Karakikes, I., Nadal-Ginard, B. (2006). The cardiac stem cell: The adult mammalian heart harbours Oct4pos cardiac stem cells with very broad developmental potential. Circulation, 114, II_303.

    Google Scholar 

  42. Carlson, S., Trial, J., Soeller, C., & Entman, M. L. (2011). Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction. Cardiovascular Research, 91, 99–107.

    Article  PubMed  CAS  Google Scholar 

  43. Saga, Y., Miyagawa-Tomita, S., Takagi, A., Kitajima, S., Miyazaki, J., & Inoue, T. (1999). MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development, 126, 3437–3447.

    PubMed  CAS  Google Scholar 

  44. Kitajima, S., Takagi, A., Inoue, T., & Saga, Y. (2000). MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development, 127, 3215–3226.

    PubMed  CAS  Google Scholar 

  45. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  46. Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95, 9–20.

    Article  PubMed  CAS  Google Scholar 

  47. Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A., et al. (2007). Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 14068–14073.

    Article  PubMed  CAS  Google Scholar 

  48. Plageman, T. F., Jr., & Yutzey, K. E. (2005). T-box genes and heart development: Putting the “T” in heart. Developmental Dynamics, 232, 11–20.

    Article  PubMed  CAS  Google Scholar 

  49. Kraus, F., Haenig, B., & Kispert, A. (2001). Cloning and expression analysis of the mouse T-box gene Tbx18. Mechanisms of Development, 100, 83–86.

    Article  PubMed  CAS  Google Scholar 

  50. Hatcher, C. J., Diman, N. Y., Kim, M. S., Pennisi, D., Song, Y., Goldstein, M. M., Mikawa, T., & Basson, C. T. (2004). A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiology Genomics, 18, 129–140.

    Article  CAS  Google Scholar 

  51. Tanaka, M., & Tickle, C. (2004). Tbx18 and boundary formation in chick somite and wing development. Developmental Biology, 268, 470–480.

    Article  PubMed  CAS  Google Scholar 

  52. Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R., & Grosveld, F. (1999). The transcription factor GATA6 is essential for early extraembryonic development. Development, 126, 723–732.

    CAS  Google Scholar 

  53. Potthoff, M. J., & Olson, E. N. (2007). MEF2: A central regulator of diverse developmental programs. Development, 134, 4131–4140.

    Article  PubMed  CAS  Google Scholar 

  54. Arminan, A., Gandia, C., Bartual, M., García-Verdugo, J. M., Lledó, E., Mirabet, V., et al. (2009). Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells and Development, 18, 907–918.

    Article  PubMed  CAS  Google Scholar 

  55. Arminan, A., Gandia, C., García-Verdugo, J. M., Lledó, E., Mullor, J. L., Montero, J. A., et al. (2010). Cardiac transcription factors driven lineage-specification of adult stem cells. Journal of Cardiovascular Translational Research, 3, 61–65.

    Article  PubMed  Google Scholar 

  56. Guan, K., Rohwedel, J., & Wobus, A. N. (1999). Embryonic stem cell differentiation models: Cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro. Cytotechnology, 30, 211–226.

    Article  PubMed  CAS  Google Scholar 

  57. Miller-Hance, W. C., LaCorbiere, M., Fuller, S. J., Evans, S. M., Lyons, G., Schmidt, C., et al. (1993). In vitro chamber specification during embryonic stem cell cardiogenesis. Expression of the ventricular myosin light chain-2 gene is independent of heart tube formation. Journal of Biological Chemistry, 268, 25244–25252.

    PubMed  CAS  Google Scholar 

  58. Rajala, K., Pekkanen-Mattila, M., Aalto-Setala, K. (2011). Cardiac differentiation of pluripotent stem cells. Stem Cells International, 383709.

  59. Yoon, B. S., Yoo, S. J., Lee, J. E., You, S., Lee, H. T., Yoon, H. S., et al. (2006). Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 74, 149–159.

    Article  PubMed  CAS  Google Scholar 

  60. Balana, B., Nicoletti, C., Zahanich, I., Graf, E. M., Christ, T., Boxberger, S., et al. (2006). 5’-azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Research, 16, 949–960.

    Article  PubMed  CAS  Google Scholar 

  61. Fukuda, K. (2001). Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artificial Organs, 25, 187–193.

    Article  PubMed  CAS  Google Scholar 

  62. Bayes-Genis, A., Roura, S., Soler-Botija, C., Farré, J., Hove-Madsen, L., Llachet, A., et al. (2005). Identification of cardiomyogenic lineage markers in untreated human bone marrow-derived mesenchymal stem cells. Transplantation Proceedings, 37, 4077–4079.

    Article  PubMed  CAS  Google Scholar 

  63. Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A., & Megeney, L. A. (2002). The post-natal heart contains a myocardial stem cell population. FEBS Letters, 530, 239–243.

    Article  PubMed  CAS  Google Scholar 

  64. Wainwright, J. M., Czajka, C. A., Patel, U. B., Freytes, D. O., Tobita, K., & Gilbert, T. W. (2010). Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Engineering. Part C, Methods, 16, 525–532.

    Article  PubMed  CAS  Google Scholar 

  65. Lobe, C. G., Rudnicki, M. A., & Megeney, L. A. (2002). The post-natal heart contains a myocardial stem cell population. FEBS Letters, 530, 239–243.

    Article  PubMed  Google Scholar 

  66. Bayes-Genis, A., Roura, S., Soler-Botija, C., Farre, J., Hove-Madsen, L., Llach, A., et al. (2005). Identification of cardiomyogenic lineage markers in untreated human bone marrow-derived mesenchymal stem cells. Transplantation Proceedings, 37, 4077–4079.

    Article  PubMed  CAS  Google Scholar 

  67. Galli, D., Innocenzi, A., Staszewsky, L., Zanetta, L., Sampaolesi, M., Bai, A., et al. (2005). Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: A comparison with bone marrow progenitors, fibroblasts, and endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 692–697.

    Article  PubMed  CAS  Google Scholar 

  68. Leri, A., Kajstura, J., & Anversa, P. (2005). Cardiac stem cells and mechanisms of myocardial regeneration. Physiological Reviews, 85, 1373–1416.

    Article  PubMed  CAS  Google Scholar 

  69. Christoforou, N., Oskouei, B. N., Esteso, P., Hill, C. M., Zimmet, J. M., Bian, W., et al. (2010). Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS One, 5, e11536.

    Article  PubMed  Google Scholar 

  70. Acquistapace, A., Bru, T., Lesault, P. F., Figeac, F., Coudert, A. E., le Coz, O., et al. (2011). Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells, 29, 812–824.

    Article  PubMed  CAS  Google Scholar 

  71. Liu, J., Hu, Q., Wang, Z., Xu, C., Wang, X., Gong, G., Mansoor, A., Lee, J., Hou, M., Zeng, L., Zhang, J. R., Jerosch-Herold, M., Guo, T., Bache, R. J., & Zhang, J. (2004). Autologous stem cell transplantation for myocardial repair. American Journal of Physiology - Heart and Circulatory Physiology, 287, H501–H511.

    Article  PubMed  CAS  Google Scholar 

  72. Makkar, R. R., Price, M. J., Lill, M., Frantzen, M., Takizawa, K., Kleisli, T., Zheng, J., Kar, S., McClelan, R., Miyamota, T., Bick-Forrester, J., Fishbein, M. C., Shah, P. K., Forrester, J. S., Sharifi, B., Chen, P. S., & Qayyum, M. (2005). Intramyocardial injection of allogenic bone marrow- derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 10, 225–233.

    Article  PubMed  Google Scholar 

  73. Valina, C., Pinkernell, K., Song, Y. H., Bai, X., Sadat, S., Campeau, R. J., Le Jemtel, T. H., & Alt, E. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28, 2667–2677.

    Article  PubMed  Google Scholar 

  74. Sartore, S., Lenzi, M., Angelini, A., Chiavegato, A., Gasparotto, L., De Coppi, P., Bianco, R., & Gerosa, G. (2005). Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. European Journal of Cardio-Thoracic Surgery, 28, 677–684.

    Article  PubMed  Google Scholar 

  75. Zaruba, M. M., Soonpaa, M., Reuter, S., & Field, L. J. (2010). Cardiomyogenic potential of c-kit+–expressing cells derived from neonatal and adult mouse hearts. Circulation, 121, 1992–2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

VA and PG were sponsored by National Institute of Molecular Genetics (INGM), Milan, Italy. This work was supported by PUR 2008.

The authors thank Dr. Dellavalle A. for providing suggestion and help in the experiments with rat cardiomyocytes. They are grateful to the Flow Cytometry Resource and Analytical Center, Stem Cell Institute at San Raffaele Hospital for surface marker characterization.

Conflict of Interest

The author declares no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. L. Brevini.

Additional information

A. Vanelli, G. Pennarossa and S. Maffei equally contributed to the present work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanelli, A., Pennarossa, G., Maffei, S. et al. Isolation, Characterization and Differentiation Potential of Cardiac Progenitor Cells in Adult Pigs. Stem Cell Rev and Rep 8, 706–719 (2012). https://doi.org/10.1007/s12015-011-9339-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9339-2

Keywords

Navigation