Skip to main content

Advertisement

Log in

Human Bone Marrow Mesenchymal Stem Cells: A Systematic Reappraisal Via the Genostem Experience

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Genostem (acronym for “Adult mesenchymal stem cells engineering for connective tissue disorders. From the bench to the bed side”) has been an European consortium of 30 teams working together on human bone marrow Mesenchymal Stem Cell (MSC) biological properties and repair capacity. Part of Genostem activity has been dedicated to the study of basic issues on undifferentiated MSCs properties and on signalling pathways leading to the differentiation into 3 of the connective tissue lineages, osteoblastic, chondrocytic and tenocytic. We have evidenced that native bone marrow MSCs and stromal cells, forming the niche of hematopoietic stem cells, were the same cellular entity located abluminally from marrow sinus endothelial cells. We have also shown that culture-amplified, clonogenic and highly-proliferative MSCs were bona fide stem cells, sharing with other stem cell types the major attributes of self-renewal and of multipotential priming to the lineages to which they can differentiate (osteoblasts, chondrocytes, adipocytes and vascular smooth muscle cells/pericytes). Extensive transcription profiling and in vitro and in vivo assays were applied to identify genes involved in differentiation. Thus we have described novel factors implicated in osteogenesis (FHL2, ITGA5, Fgf18), chondrogenesis (FOXO1A) and tenogenesis (Smad8). Another part of Genostem activity has been devoted to studies of the repair capacity of MSCs in animal models, a prerequisite for future clinical trials. We have developed novel scaffolds (chitosan, pharmacologically active microcarriers) useful for the repair of both bone and cartilage. Finally and most importantly, we have shown that locally implanted MSCs effectively repair bone, cartilage and tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Delorme, B., & Charbord, P. (2007). Culture and characterization of human bone marrow mesenchymal stem cells. Methods in Molecular Medicine, 140, 67–81.

    Article  CAS  PubMed  Google Scholar 

  2. Dimitriou, H., Linardakis, E., Martimianaki, G., et al. (2008). Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy, 10(2), 125–133.

    Article  CAS  PubMed  Google Scholar 

  3. Delorme, B., Ringe, J., Pontikoglou, C., et al. (2009). Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity. Stem Cells, 27(5), 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  4. Peiffer, I., Eid, P., Barbet, R., et al. (2007). A sub-population of high proliferative potential-quiescent human mesenchymal stem cells is under the reversible control of interferon alpha/beta. Leukemia, 21(4), 714–724.

    Article  CAS  PubMed  Google Scholar 

  5. Delorme, B., Ringe, J., Gallay, N., et al. (2008). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 111(5), 2631–2635.

    Article  CAS  PubMed  Google Scholar 

  6. Sacchetti, B., Funari, A., Michienzi, S., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131(2), 324–336.

    Article  CAS  PubMed  Google Scholar 

  7. Kaltz, N., Funari, A., Hippauf, S., et al. (2008). In vivo osteoprogenitor potency of human stromal cells from different tissues does not correlate with expression of POU5F1 or its pseudogenes. Stem Cells, 26(9), 2419–2424.

    Article  CAS  PubMed  Google Scholar 

  8. Galmiche, M. C., Koteliansky, V. E., Briere, J., Herve, P., & Charbord, P. (1993). Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood, 82(1), 66–76.

    CAS  PubMed  Google Scholar 

  9. Bianco, P., & Gehron Robey, P. (2000). Marrow stromal stem cells. J Clin Invest, 105(12), 1663–1668.

    Article  CAS  PubMed  Google Scholar 

  10. Song, L., Webb, N. E., Song, Y., & Tuan, R. S. (2006). Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells, 24(7), 1707–1718.

    Article  PubMed  Google Scholar 

  11. Takashima, Y., Era, T., Nakao, K., et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129(7), 1377–1388.

    Article  CAS  PubMed  Google Scholar 

  12. Ogawa, M., LaRue, A. C., & Drake, C. J. (2006). Hematopoietic origin of fibroblasts/myofibroblasts: Its pathophysiologic implications. Blood, 108(9), 2893–2896.

    Article  CAS  PubMed  Google Scholar 

  13. Bianco, P., Robey, P. G., & Simmons, P. J. (2008). Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell, 2(4), 313–319.

    Article  CAS  PubMed  Google Scholar 

  14. Marie, P. J., & Fromigue, O. (2006). Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med, 1(4), 539–548.

    Article  CAS  PubMed  Google Scholar 

  15. Hamidouche, Z., Hay, E., Vaudin, P., et al. (2008). FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. Faseb Journal, 22(11), 3813–3822.

    Article  CAS  PubMed  Google Scholar 

  16. Hamidouche, Z., Fromigue, O., Ringe, J., et al. (2009). Priming integrin {alpha}5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA.

  17. Djouad, F., Bony, C., Canovas, F., et al. (2009). Transcriptomic analysis identifies Foxo3A as a novel transcription factor regulating mesenchymal stem cell chrondrogenic differentiation. Cloning Stem Cells, 11(3), 407–416.

    Article  CAS  PubMed  Google Scholar 

  18. Djouad, F., Delorme, B., Maurice, M., et al. (2007). Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Research and Therapy, 9(2), R33.

    Article  PubMed  Google Scholar 

  19. Mrugala, D., Dossat, N., Ringe, J., et al. (2009). Gene expression profile of multipotent mesenchymal stromal cells: Identification of pathways common to TGFbeta3/BMP2-induced chondrogenesis. Cloning Stem Cells, 11(1), 61–76.

    Article  CAS  PubMed  Google Scholar 

  20. Boyer, M. I., Goldfarb, C. A., & Gelberman, R. H. (2005). Recent progress in flexor tendon healing. The modulation of tendon healing with rehabilitation variables. Journal of Hand Therapy, 18(2), 80–85. quiz 6.

    Article  PubMed  Google Scholar 

  21. Hoffmann, A., Pelled, G., Turgeman, G., et al. (2006). Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. Journal of Clinical Investigation, 116(4), 940–952.

    Article  CAS  PubMed  Google Scholar 

  22. Correlo, V. M., Pinho, E. D., Pashkuleva, I., Bhattacharya, M., Neves, N. M., & Reis, R. L. (2007). Water absorption and degradation characteristics of chitosan-based polyesters and hydroxyapatite composites. Macromolecular Bioscience, 7(3), 354–363.

    Article  CAS  PubMed  Google Scholar 

  23. Costa-Pinto, A. R., Salgado, A. J., Correlo, V. M., et al. (2008). Adhesion, proliferation, and osteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seeded on novel melt-based chitosan/polyester 3D porous scaffolds. Tissue Engineering Part A, 14(6), 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  24. Oliveira, J. T., Correlo, V. M., Sol, P. C., et al. (2008). Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach. Tissue Engineering Part A, 14(10), 1651–1661.

    Article  CAS  PubMed  Google Scholar 

  25. Costa-Pinto, A. R., Correlo, V. M., & Sol, P. C., et al. (2009).Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Seeded on Melt Based Chitosan Scaffolds for Bone Tissue Engineering Applications. Biomacromolecules, 10(8), 2067–2073.

  26. Roman, I., Vilalta, M., Rodriguez, J., et al. (2007). Analysis of progenitor cell-scaffold combinations by in vivo non-invasive photonic imaging. Biomaterials, 28(17), 2718–2728.

    Article  CAS  PubMed  Google Scholar 

  27. Srouji, S., Kizhner, T., Ben David, D., Riminucci, M., Bianco, P., & Livne, E. (2009). The Schneiderian membrane contains osteoprogenitor cells: in vivo and in vitro study. Calcified Tissue International, 84(2), 138–145.

    Article  CAS  PubMed  Google Scholar 

  28. Mrugala, D., Bony, C., Neves, N., et al. (2008). Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Annals of the Rheumatic Diseases, 67(3), 288–295.

    Article  CAS  PubMed  Google Scholar 

  29. Snedeker, J. G., Arav, A. B., Zilberman, Y., Pelled, G., & Gazit, D. (2009). Functional Fibered Confocal Microscopy: A Promising Tool for Assessing Tendon Regeneration. Tissue Eng Part C Methods, 15(3), 485–491.

    Google Scholar 

  30. Snedeker, J. G., Pelled, G., Zilberman, Y., et al. (2008). An Analytical Model for Elucidating Tendon Tissue Structure and Biomechanical Function from in vivo Cellular Confocal Microscopy Images. Cells Tissues Organs, 190(2), 111–119.

    Google Scholar 

  31. Snedeker, J. G., Pelled, G., Zilberman, Y., Gerhard, F., Muller, R., & Gazit, D. (2006). Endoscopic cellular microscopy for in vivo biomechanical assessment of tendon function. Journal of Biomedical Optics, 11(6), 064010.

    Article  PubMed  Google Scholar 

  32. Jones, P. H., Simons, B. D., & Watt, F. M. (2007). Sic transit gloria: farewell to the epidermal transit amplifying cell? Cell Stem Cell, 1(4), 371–381.

    Article  CAS  PubMed  Google Scholar 

  33. Zipori, D. (2005). The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells, 23(6), 719–726.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, S. (2009). Reprogramming cell fates: reconciling rarity with robustness. Bioessays, 31(5), 546–560.

    Article  CAS  PubMed  Google Scholar 

  35. Dezawa, M., Ishikawa, H., Itokazu, Y., et al. (2005). Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science, 309(5732), 314–317.

    Article  CAS  PubMed  Google Scholar 

  36. Dezawa, M., Kanno, H., Hoshino, M., et al. (2004). Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. Journal of Clinical Investigation, 113(12), 1701–1710.

    CAS  PubMed  Google Scholar 

  37. Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1(1), 39–49.

    Article  CAS  PubMed  Google Scholar 

  38. Slack, J. M. (2007). Metaplasia and transdifferentiation: from pure biology to the clinic. Nature Reviews Molecular Cell Biology, 8(5), 369–378.

    Article  CAS  PubMed  Google Scholar 

  39. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.

    Article  CAS  PubMed  Google Scholar 

  40. Granero-Molto, F., Weis, J. A., Miga, M. I., et al. (2009). Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, 27(8), 1887–1898.

    Article  CAS  PubMed  Google Scholar 

  41. Kinnaird, T., Stabile, E., Burnett, M. S., et al. (2004). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109(12), 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  42. da Silva Meirelles, L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26(9), 2287–2299.

    Article  PubMed  Google Scholar 

  43. Noel, D., Caton, D., Roche, S., et al. (2008). Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Experimental Cell Research, 314(7), 1575–1584.

    Article  CAS  PubMed  Google Scholar 

  44. Towler, D. A., & Gelberman, R. H. (2006). The alchemy of tendon repair: a primer for the (S)mad scientist. Journal of Clinical Investigation, 116(4), 863–866.

    Article  CAS  PubMed  Google Scholar 

Download references

Aknowledgments

Work supported by the European Community (Key action 1.2.4-3 Integrated Project Genostem, contract N° 503161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Charbord.

Additional information

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charbord, P., Livne, E., Gross, G. et al. Human Bone Marrow Mesenchymal Stem Cells: A Systematic Reappraisal Via the Genostem Experience. Stem Cell Rev and Rep 7, 32–42 (2011). https://doi.org/10.1007/s12015-010-9125-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9125-6

Keywords

Navigation