Skip to main content

Advertisement

Log in

Breast Cancer Stem Cells-Research Opportunities Utilizing Mathematical Modeling

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

There is increasing evidence for the “cancer stem cell hypothesis” which holds that cancers originate in tissue stem cells or progenitor cells. As a result of this, cancers are driven by a cellular subcomponent that retains stem cell properties. Among these properties are self-renewal and multi-lineage differentiation. The biological processes which account for stem cell properties are currently being elucidated. Cancer stem cells maintain many of the same characteristics of their normal counterparts. The combination of biological research with mathematical modeling may provide for a greater understanding of the complex picture of breast cancer stem cells and assist cancer biologists and clinical oncologists in designing and testing novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. MacMahon, B. (2006). Epidemiology and the causes of breast cancer. International Journal of Cancer, 118, 2373–2378.

    Article  CAS  Google Scholar 

  2. Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439, 84–88.

    Article  PubMed  CAS  Google Scholar 

  3. Dontu, G., Abdallah, W. M., Foley, J. M., Jackson, K. W., Clarke, M. F., Kawamura, M. J., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. General Development, 17, 1253–1270.

    Article  CAS  Google Scholar 

  4. Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., et al. (2003). Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proceedings of the National Academy Sciences of U.S.A., 100, 15853–15858.

    Article  CAS  Google Scholar 

  5. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy Sciences of U.S.A., 100, 3983–3988.

    Article  CAS  Google Scholar 

  6. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.

    Article  PubMed  CAS  Google Scholar 

  7. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63, 5821–5828.

    PubMed  CAS  Google Scholar 

  8. Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835.

    Article  PubMed  CAS  Google Scholar 

  9. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111–115.

    Article  PubMed  CAS  Google Scholar 

  10. O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106–110.

    Article  PubMed  CAS  Google Scholar 

  11. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946–10951.

    Article  PubMed  CAS  Google Scholar 

  12. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer and cancer stem cells. Nature, 414, 105–111.

    Article  PubMed  CAS  Google Scholar 

  13. Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem cell biology to cancer. Nature Reviews. Cancer, 3, 895–902.

    Article  PubMed  CAS  Google Scholar 

  14. Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F., & Wicha, M. S. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36, 59–72.

    Article  PubMed  CAS  Google Scholar 

  15. Ganguli, R., & Puri, I. K. (2006). Mathematical modeling of the cancer stem cell hypothesis. Cell Proliferation, 39, 3–14.

    Article  Google Scholar 

  16. Michor, F., Hughes, T. F., Iwasa, Y., Branford, S., Shah, N. P., Sawyers, C., et al. (2005). Dynamics of chronic myeloid leukaemia. Nature, 435, 1267–1270.

    Article  PubMed  CAS  Google Scholar 

  17. Angstreich, G. R., Smith, B. D., & Jones, R. J. (2004). Treatment options for chronic myeloid leukemia: imatinib versus interferon versus allogeneic transplant. Current Opinion in Oncology, 16, 95–99.

    Article  PubMed  Google Scholar 

  18. Ponti, D., Zaffaroni, N., Capelli, C., & Diadone, M. G. (2006). Breast cancer stem cells: An overview. European Journal of Cancer, 42, 1219–1224.

    Article  PubMed  CAS  Google Scholar 

  19. Ashkenazi, R., Heusel, S., & Jackson, T. L. Pathways to tumorigenesis-modeling mutation acquisition in stem cells and their progeny. (to be submitted)

  20. Morrison, S. J., & Kimbel, J. (2006). Asymmetric and symmetric stem cell divisions in development and cancer. Nature, 441, 1068–1074.

    Article  PubMed  CAS  Google Scholar 

  21. Gompertz, B. (1899). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Batly, Esq. F.R.S. Phil. Transactions of the Royal Society, 115, 513–585.

    Article  Google Scholar 

  22. Norton, L., Simon, R., Brereton, H. D., & Bogden, A. E. (1976). Predicting the course of Gompertzian growth. Nature, 264, 542–545.

    Article  PubMed  CAS  Google Scholar 

  23. Norton, L., & Simon, R. (1977). Growth curve of an experimental solid tumor following radiotherapy. Journal of the National Cancer Institute, 58, 1735–1741.

    PubMed  CAS  Google Scholar 

  24. Norton, L., & Simon, R. (1986). The Norton–Simon hypothesis revisited. Cancer Treatment and Research, 70, 163–169.

    CAS  Google Scholar 

  25. Norton, L. (2001). Theoretical concepts and the emerging role of taxanes in adjuvant therapy. Oncologist, 6, 30–35.

    Article  PubMed  CAS  Google Scholar 

  26. Norton, L. (2005). Conceptual and practical implications of breast tissue geometry: toward a more effective, less toxic therapy. The Oncologist, 10, 370–381.

    Article  PubMed  CAS  Google Scholar 

  27. Gyllenberg, M., & Webb, G. F. (1989). Quiescence as an explanation of Gompertzian tumor growth. Growth, Development, and Aging, 53, 25–33.

    PubMed  CAS  Google Scholar 

  28. Dingli, D., & Michor, F. (2006). Successful therapy must eradicate cancer stem cells. Stem Cells, 24, 2603–2610.

    Article  PubMed  CAS  Google Scholar 

  29. Artavanis-Tsakonas, S., Rand, M. D., & Lake, J. R. (1999). Notch signaling: Cell fate control and signal integration in development. Science, 284, 770.

    Article  PubMed  CAS  Google Scholar 

  30. Miele, L., & Osborne, B. (1999). Arbiter of differentiation and death: Notch signaling meets apoptosis. Journal of Cellular Physiology, 181, 393–409.

    Article  PubMed  CAS  Google Scholar 

  31. Dontu, G., Jackson, K., McNicholas, E., Kawamura, M., Abdallah, W., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6, R605–R615.

    Article  Google Scholar 

  32. Siziopikou, K., Miao, H., Rizzo, P., Song, L., Selvaggi, S., Bashir, A. et al. (2003). Notch signaling is a therapeutic target in breast cancer. Proceedings of the 94th Annual Meeting of theAACR Abstract, 5575, 1277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max S. Wicha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkenazi, R., Jackson, T.L., Dontu, G. et al. Breast Cancer Stem Cells-Research Opportunities Utilizing Mathematical Modeling. Stem Cell Rev 3, 176–182 (2007). https://doi.org/10.1007/s12015-007-0026-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0026-2

Keywords

Navigation