Skip to main content
Log in

β-carotene inhibits MAPKs signaling pathways on rat colonic epithelial cells to attenuate TNF-α-induced intestinal inflammation and injury

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This experiment successfully isolated the rat colonic epithelial cells and established a TNF-α-induced intestinal inflammation model. Western Blot was used to detect the related protein expression levels of the MAPKs signaling pathway. QPCR technology was used to detect the expression of aquaporins, intestinal mucosal repair factor, and inflammatory factors. The results show that 25 μM β-carotene pretreatment at 24 h can inhibit MAPKs signaling pathway activated by TNF-α, change the relative mRNA expression of inflammatory cytokines, intestinal mucosal repair factors, and aquaporins, and the phosphorylated protein expression of p38, ERK, and NF-κB were attenuated to reduce inflammatory damage. After inhibiting p38 and ERK, the effect of β-carotene was reduced significantly (P < 0.05). In conclusion, β-carotene can alleviate the abnormal expression of aquaporins caused by inflammation through the MAPKs signaling pathway. This is for β-carotene as a functional nutrient that provides new insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Quadro, L., Giordano, E., Costabile, B. K., Nargis, T., Iqbal, J., Kim, Y., Wassef, L., & Hussain, M. M. (2020). Interplay between beta-carotene and lipoprotein metabolism at the maternal-fetal barrier. Biochimica et Biophysica Acta, Molecular Cell Research, 1865, 158591.

    Article  CAS  Google Scholar 

  2. Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012). Physical and chemical stability of beta-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem, 132, 1221–1229.

    Article  CAS  PubMed  Google Scholar 

  3. Grar, H., Dib, W., Gourine, H., Negaoui, H., Taleb, B. H. F., Louaar, A., Ouldhocine, S., Kaddouri, H., Kheroua, O., & Saidi, D. (2020). β-Carotene improves intestinal barrier function by modulating proinflammatory cytokines and improving antioxidant capacity in β-lactoglobulin-sensitized mice. Journal of Biological Regulators and Homeostatic Agents, 34, 1689–1697.

    CAS  PubMed  Google Scholar 

  4. Hardin, J. A., Wallace, L. E., Wong, J. F., O’Loughlin, E. V., Urbanski, S. J., Gall, D. G., MacNaughton, W. K., & Beck, P. L. (2004). Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn’s disease and infectious colitis. Cell Tissue Res, 318, 313–323.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, G., Li, J., Wang, J., Shen, X., & Sun, J. (2014). Aquaporin 3 and 8 are down-regulated in TNBS-induced rat colitis. Biochemical and Biophysical Research Communications, 443, 161–166.

    Article  CAS  PubMed  Google Scholar 

  6. Ricanek, P., Lunde, L. K., Frye, S. A., Støen, M., Nygård, S., Morth, J. P., Rydning, A., Vatn, M. H., Amiry-Moghaddam, M., & Tønjum, T. (2015). Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clinical and Experimental Gastroenterology, 8, 49–67.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sisto, M., Ribatti, D., & Lisi, S. (2019). Aquaporin water channels: new perspectives on the potential role in inflammation. Advances in Protein Chemistry and Structural Biology, 116, 311–345.

    Article  CAS  PubMed  Google Scholar 

  8. Maidhof, R., Jacobsen, T., Papatheodorou, A., & Chahine, N. O. (2014). Inflammation induces irreversible biophysical changes in isolated nucleus pulposus cells. PLoS One, 9, e99621.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Baud, V., & Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biology, 11, 372–377.

    Article  CAS  Google Scholar 

  10. Nagahara, M., Waguri-Nagaya, Y., Yamagami, T., Aoyama, M., Tada, T., Inoue, K., Asai, K., & Otsuka, T. (2010). TNF-alpha-induced aquaporin 9 in synoviocytes from patients with OA and RA. Rheumatology (Oxford), 49, 898–906.

    Article  CAS  PubMed  Google Scholar 

  11. Fang, J. Y., & Richardson, B. C. (2005). The MAPK signalling pathways and colorectal cancer. The Lancet Oncology, 6, 322–327.

    Article  CAS  PubMed  Google Scholar 

  12. Dong, C., Davis, R. J., & Flavell, R. A. (2002). MAP kinases in the immune response. Annual Review of Immunology, 20, 55–72.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, D. B., & Davis, J. S. (2003). Epidermal growth factor induces c-fos and c-jun mRNA via Raf-1/MEK1/ERK-dependent and -independent pathways in bovine luteal cells. Molecular and Cellular Endocrinology, 200, 141–154.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, J. C., Laydon, J. T., McDonnell, P. C., Gallagher, T. F., Kumar, S., Green, D., McNulty, D., Blumenthal, M. J., Heys, J. R., Landvatter, S. W., Strickler, J. E., McLaughlin, M. M., Siemens, I. R., Fisher, S. M., Livi, G. P., White, J. R., Adams, J. L., & Young, P. R. (1994). A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 372, 739–746.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22, 153–183.

    CAS  PubMed  Google Scholar 

  16. Carter, A. B., Knudtson, K. L., Monick, M. M., & Hunninghake, G. W. (1999). The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). Journal of Biological Chemistry, 274, 30858–30863.

    Article  CAS  PubMed  Google Scholar 

  17. Schindler, J. F., Monahan, J. B., & Smith, W. G. (2007). p38 pathway kinases as anti-inflammatory drug targets. Journal of Dental Research, 86, 800–811.

    Article  CAS  PubMed  Google Scholar 

  18. Underwood, D. C., Osborn, R. R., Bochnowicz, S., Webb, E. F., Rieman, D. J., Lee, J. C., Romanic, A. M., Adams, J. L., Hay, D. W., & Griswold, D. E. (2000). SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. American Journal of Physiology-Lung Cellular and Molecular Physiology, 279, L895–902.

    Article  CAS  PubMed  Google Scholar 

  19. Badger, A. M., Bradbeer, J. N., Votta, B., Lee, J. C., Adams, J. L., & Griswold, D. E. (1996). Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. Journal of Pharmacology and Experimental Therapeutics., 279, 1453–1461.

    CAS  PubMed  Google Scholar 

  20. Wadsworth, S. A., Cavender, D. E., Beers, S. A., Lalan, P., Schafer, P. H., Malloy, E. A., Wu, W., Fahmy, B., Olini, G. C., Davis, J. E., Pellegrino-Gensey, J. L., Wachter, M. P., & Siekierka, J. J. (1999). RWJ 67657, a potent, orally active inhibitor of p38 mitogen-activated protein kinase. Journal of Pharmacology and Experimental Therapeutics, 291, 680–687.

    CAS  PubMed  Google Scholar 

  21. Zhao, W. X., Cui, N., Jiang, H. Q., Ji, X. M., Han, X. C., Han, B. B., Wang, T., & Wang, S. J. (2017). Effects of radix astragali and its split components on gene expression profiles related to water metabolism in rats with the dampness stagnancy due to spleen deficiency syndrome. Evidence-Based Complementary and Alternative Medicine, 2017, 4946031.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen, J., Li, Y., Tian, Y., Huang, C., Li, D., Zhong, Q., & Ma, X. (2015). Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Current Protein & Peptide Science, 16, 592–603.

    Article  CAS  Google Scholar 

  23. Fan, P., Li, L., Rezaei, A., Eslamfam, S., Che, D., & Ma, X. (2015). Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Current Protein & Peptide Science, 16, 646–654.

    Article  CAS  Google Scholar 

  24. Zhu, L., Cai, X., Guo, Q., Chen, X., Zhu, S., & Xu, J. (2013). Effect of N-acetyl cysteine on enterocyte apoptosis and intracellular signalling pathways’ response to oxidative stress in weaned piglets. British Journal of Nutrition, 110, 1938–1947.

    Article  CAS  PubMed  Google Scholar 

  25. Modina, S. C., Polito, U., Rossi, R., Corino, C., & Di Giancamillo, A. (2019). Nutritional regulation of gut barrier integrity in weaning piglets. Animals (Basel), 2019, 9.

    Google Scholar 

  26. Oswald, I. P. (2006). Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Veterinary Research, 37, 359–368.

    Article  CAS  PubMed  Google Scholar 

  27. Johansson, M. E., Sjövall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology & Hepatology, 10, 352–361.

    Article  CAS  Google Scholar 

  28. Baud, V., & Derudder, E. (2011). Control of NF-κB activity by proteolysis. Current Topics in Microbiology and Immunology, 349, 97–114.

    CAS  PubMed  Google Scholar 

  29. Lauridsen, C. (2019). From oxidative stress to inflammation: redox balance and immune system. Poultry Science, 98, 4240–4246.

    Article  CAS  PubMed  Google Scholar 

  30. Cassidy, H., Radford, R., Slyne, J., O’Connell, S., Slattery, C., Ryan, M. P., & McMorrow, T. (2012). The role of MAPK in drug-induced kidney injury. Journal of Signal Transduction, 2012, 463617.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wan, F., & Lenardo, M. J. (2010). The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Research, 20, 24–33.

    Article  CAS  PubMed  Google Scholar 

  32. Umenishi, F., & Schrier, R. W. (2002). Identification and characterization of a novel hypertonicity-responsive element in the human aquaporin-1 gene. Biochemical and Biophysical Research Communications, 292, 771–775.

    Article  CAS  PubMed  Google Scholar 

  33. Umenishi, F., & Schrier, R. W. (2003). Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. Journal of Biological Chemistry, 278, 15765–15770.

    Article  CAS  PubMed  Google Scholar 

  34. Umenishi, F., Narikiyo, T., & Schrier, R. W. (2004). Hypertonic induction of aquaporin-1 water channel independent of transcellular osmotic gradient. Biochemical and Biophysical Research Communications, 325, 595–599.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, G. X., Dong, P. P., Peng, R., Li, J., Zhang, D. Y., Wang, J. Y., Shen, X. Z., Dong, L., & Sun, J. Y. (2016). Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system. Biotechnic & Histochemistry, 91, 269–276.

    Article  CAS  Google Scholar 

  36. Matsuura, M., Okazaki, K., Nishio, A., Nakase, H., Tamaki, H., Uchida, K., Nishi, T., Asada, M., Kawasaki, K., Fukui, T., Yoshizawa, H., Ohashi, S., Inoue, S., Kawanami, C., Hiai, H., Tabata, Y., & Chiba, T. (2005). Therapeutic effects of rectal administration of basic fibroblast growth factor on experimental murine colitis. Gastroenterology, 128, 975–986.

    Article  CAS  PubMed  Google Scholar 

  37. Galura, G. M., Chavez, L. O., Robles, A., & McCallum, R. (2019). Gastroduodenal injury: role of protective factors. Curr Gastroenterology Report, 21, 34.

    Article  Google Scholar 

  38. Tang, X., Ma, W., Zhan, W., Wang, X., Dong, H., Zhao, H., Yang, L., Ji, C., Han, Q., Ji, C., Liu, H., & Wang, N. (2018). Internal biliary drainage superior to external biliary drainage in improving gut mucosa barrier because of goblet cells and mucin-2 up-regulation. Bioscience Report, 2018, 38.

    Google Scholar 

  39. Zhang, S., Xu, W., Wang, H., Cao, M., Li, M., Zhao, J., Hu, Y., Wang, Y., Li, S., Xie, Y., Chen, G., Liu, R., Cheng, Y., Xu, Z., Zou, K., Gong, S. & & Geng, L. (2019). Inhibition of CREB-mediated ZO-1 and activation of NF-kappaB-induced IL-6 by colonic epithelial MCT4 destroys intestinal barrier function. Cell Proliferation, 52, e12673

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31672511).

Author information

Authors and Affiliations

Authors

Contributions

YS and LZ co-designed the study and wrote the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Xin Zheng.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethics approval

This experiment was approved by the Animal Ethical Committee of Jilin Agricultural University (no. 201705001).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Zhu, L. & Zheng, X. β-carotene inhibits MAPKs signaling pathways on rat colonic epithelial cells to attenuate TNF-α-induced intestinal inflammation and injury. Cell Biochem Biophys 82, 291–302 (2024). https://doi.org/10.1007/s12013-023-01202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01202-8

Keywords

Navigation