Skip to main content

Advertisement

Log in

MLK3 localizes mainly to the cytoplasm and promotes oxidative stress injury via a positive feedback loop

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Activation of mixed lineage kinase 3 (MLK3) by phosphorylation at Thr277/Ser281 stimulates downstream apoptotic pathways and ultimately leads to cell injury. MLK3 is reported to localize to both the cytoplasm and nucleus in human ovarian cancer cells and immortalized ovarian epithelial cells (T80 and T90 cells), and phosphorylation at Thr477 is required for the cytoplasmic retention of MLK3 in T80 cells. However, the subcellular distribution of MLK3 in other cell types has rarely been reported, and whether phosphorylation of MLK3 at Thr277/Ser281 affects its subcellular distribution is unknown. Here, our bioinformatics analysis predicted that MLK3 was mainly distributed in the cytoplasm and nucleus. In the human HEK293T embryonic kidney cell line and murine HT22 hippocampal neuronal cell line, endogenous MLK3 was more abundant in the cytoplasm and less abundant in the nucleus. In addition, overexpressed Myc-tagged MLK3 and EGFP-tagged MLK3 were also observed to localize mainly to the cytoplasm. MLK3 that was activated by phosphorylation at Thr277/Ser281 was mainly distributed in the cytoplasm, and phosphorylation deficient (T277A/S281A) and mimic (T277E/S281E) mutants both showed distributions similar to that of wild type (wt) MLK3, further proving that phosphorylation at Thr277/Ser281 was not involved in regulating MLK3 subcellular localization. In HEK293T cells, H2O2 stimulation accelerated MLK3 phosphorylation (activation), and this phosphorylation was reduced by the antioxidant N-acetylcysteine in a dose-dependent manner. Overexpressing wt MLK3 promoted the production of intracellular reactive oxygen species and increased cell apoptosis, both of which were enhanced by the phosphorylation-mimic (T277E/S281E) MLK3 variant but not by the phosphorylation-deficient (T277A/S281A) MLK3 variant. These findings provided additional evidence for the cytoplasmic and nuclear distribution of MLK3 in HEK293T cells or HT22 cells and revealed the pivotal role of MLK3 in the positive feedback loop of oxidative stress injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: MLK3 is mostly localized to the cytoplasm with a small amount of protein in the nucleus in HEK293T cells and HT22 cells.
Fig. 2: Overexpressed MLK3-EGFP is mainly located in the cytoplasm of HEK293T cells.
Fig. 3: Phosphorylated MLK3 (Thr277/Ser281) is mainly located in the cytoplasm of HEK293T cells.
Fig. 4: H2O2 promotes MLK3 phosphorylation at T277/S281, which in turn leads to intracellular ROS release.
Fig. 5: MLK3 phosphorylation at T277/S281 promotes cell apoptosis.

Similar content being viewed by others

Abbreviations

MLK3:

mixed lineage kinase 3

MAPKKKs:

mitogen-activated protein kinase kinase kinases

JNK:

c-Jun N-terminal kinase

ERK:

extracellular signal-regulated kinase

Thr:

threonine

Ser:

serine

ROS:

reactive oxygen species

ANOVA:

one-way analysis of variance

AAs:

amino acids

Myc-MLK3:

Myc-tagged MLK3

MLK3-EGFP:

EGFP-fused MLK3

T277/S281:

Thr277/Ser281.

References

  1. Chadee, D. N., & Kyriakis, J. M. (2004). MLK3 is required for mitogen activation of B-Raf, ERK and cell proliferation. Nature Cell Biology, 6, 770–776. https://doi.org/10.1038/ncb1152.

    Article  CAS  PubMed  Google Scholar 

  2. Sui, Z., Fan, S., Sniderhan, L., Reisinger, E., Litzburg, A., Schifitto, G., Gelbard, H. A., Dewhurst, S., & Maggirwar, S. B. (2006). Inhibition of mixed lineage kinase 3 prevents HIV-1 Tat-mediated neurotoxicity and monocyte activation. Journal of Immunology, 177(1), 702–711. https://doi.org/10.4049/jimmunol.177.1.702.

    Article  CAS  Google Scholar 

  3. Mishra, R., Barthwal, M. K., Sondarva, G., Rana, B., Wong, L., Chatterjee, M., Woodgett, J. R., & Rana, A. (2007). Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. Journal of Biology Chemistry, 282(42), 30393–30405. https://doi.org/10.1074/jbc.M705895200.

    Article  CAS  Google Scholar 

  4. Kanthasamy, A., Jin, H., Mehrotra, S., Mishra, R., Kanthasamy, A., & Rana, A. (2010). Novel cell death signaling pathways in neurotoxicity models of dopaminergic degeneration: relevance to oxidative stress and neuroinflammation in Parkinson’s disease. Neurotoxicology, 31(5), 555–561. https://doi.org/10.1016/j.neuro.2009.12.003.

    Article  CAS  PubMed  Google Scholar 

  5. Chadee, D. N. (2013). Involvement of mixed lineage kinase 3 in cancer. Canadian Journal of Physiology Pharmacology, 91(4), 268–274. https://doi.org/10.1139/cjpp-2012-0258.

    Article  CAS  PubMed  Google Scholar 

  6. Schroyer, A. L., Stimes, N. W., Abi Saab, W. F., & Chadee, D. N. (2018). MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells. Oncogene, 37(8), 1031–1040. https://doi.org/10.1038/onc.2017.396.

    Article  CAS  PubMed  Google Scholar 

  7. Kasturirangan, S., Mehdi, B., & Chadee, D. N. (2021). LATS1 regulates mixed-lineage kinase 3 (MLK3) subcellular localization and MLK3-mediated invasion in ovarian epithelial cells. Molecular and Cellular Biology, 41(7), e0007821 https://doi.org/10.1128/MCB.00078-21.

    Article  PubMed  Google Scholar 

  8. Kumar, S., Singh, S. K., Rana, B., & Rana, A. (2021). The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacology Therapy, 219, 107704. https://doi.org/10.1016/j.pharmthera.2020.107704.

    Article  CAS  Google Scholar 

  9. Gallo, K. A., & Johnson, G. L. (2002). Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nature Review Molecular Cell Biology, 3, 663–672.

    Article  CAS  Google Scholar 

  10. Brancho, D., Ventura, J. J., Jaeschke, A., Doran, B., Flavell, R. A., & Davis, R. J. (2005). Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades. Molecular and Cellular Biology, 25(9), 3670–3681. https://doi.org/10.1128/MCB.25.9.3670-3681.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Handley, M. E., Rasaiyaah, J., Chain, B. M., & Katz, D. R. (2007). Mixed lineage kinases (MLKs): a role in dendritic cells, inflammation and immunity? International Journal Experimental Pathology, 88(2), 111–126. https://doi.org/10.1111/j.1365-2613.2007.00531.x.

    Article  CAS  Google Scholar 

  12. Tse, W. K., Lai, K. P., & Takei, Y. (2011). Medaka osmotic stress transcription factor 1b (Ostf1b/TSC22D3-2) triggers hyperosmotic responses of different ion transporters in medaka gill and human embryonic kidney cells via the JNK signalling pathway. International Journal of Biochemistry & Cell Biology, 43(12), 1764–1775. https://doi.org/10.1016/j.biocel.2011.08.013.

    Article  CAS  Google Scholar 

  13. Craige, S. M., Reif, M. M., & Kant, S. (2016). Mixed - Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states. Biochemistry Biophysics Acta, 1862(9), 1581–1586. https://doi.org/10.1016/j.bbadis.2016.05.022.

    Article  CAS  Google Scholar 

  14. Gallo, K. A., Ellsworth, E., Stoub, H., & Conrad, S. E. (2020). Therapeutic potential of targeting mixed lineage kinases in cancer and inflammation. Pharmacology Therapy, 207, 107457. https://doi.org/10.1016/j.pharmthera.2019.107457.

    Article  CAS  Google Scholar 

  15. Wang, S., Zhang, T., Yang, Z., Lin, J., Cai, B., Ke, Q., Lan, W., Shi, J., Wu, S., & Lin, W. (2017). Heme oxygenase-1 protects spinal cord neurons from hydrogen peroxide-induced apoptosis via suppression of Cdc42/MLK3/MKK7/JNK3 signaling. Apoptosis, 22(3), 449–462. https://doi.org/10.1007/s10495-016-1329-z.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Q. G., Tian, H., Li, H. C., & Zhang, G. Y. (2006). Antioxidant N-acetylcysteine inhibits the activation of JNK3 mediated by the GluR6-PSD95-MLK3 signaling module during cerebral ischemia in rat hippocampus. Neuroscience Letters, 408(3), 159–164. https://doi.org/10.1016/j.neulet.2006.07.007.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, Q. J., Xu, Y., Du, C. P., & Hou, X. Y. (2012). SUMOylation of the kainate receptor subunit GluK2 contributes to the activation of the MLK3-JNK3 pathway following kainate stimulation. FEBS Letters, 586(9), 1259–1264. https://doi.org/10.1016/j.febslet.2012.03.048.

    Article  CAS  PubMed  Google Scholar 

  18. Li, H., Luo, X. B., Xu, Y., & Hou, X. Y. (2019). A brief ischemic postconditioning protects against amyloid-β peptide neurotoxicity by downregulating MLK3-MKK3/6-P38MAPK signal in rat hippocampus. Journal of Alzheimer’s Disease, 71(2), 671–684. https://doi.org/10.3233/JAD-190207.

    Article  CAS  PubMed  Google Scholar 

  19. Song, Y. J., Dai, C. X., Li, M., Cui, M. M., Ding, X., Zhao, X. F., Wang, C. L., Li, Z. L., Guo, M. Y., Fu, Y. Y., Wen, X. R., Qi, D. S., & Wang, Y. L. (2019). The potential role of HO-1 in regulating the MLK3-MKK7-JNK3 module scaffolded by JIP1 during cerebral ischemia/reperfusion in rats. Behavioural Brain Research, 359, 528–535. https://doi.org/10.1016/j.bbr.2018.11.003.

    Article  CAS  PubMed  Google Scholar 

  20. Cedeno-Rosario, L., Honda, D., Sunderland, A. M., Lewandowski, M. D., Taylor, W. R., & Chadee, D. N. (2022). Phosphorylation of mixed lineage kinase MLK3 by cyclin-dependent kinases CDK1 and CDK2 controls ovarian cancer cell division. Journal of Biology & Chemistry, 298(8), 102263. https://doi.org/10.1016/j.jbc.2022.102263.

    Article  CAS  Google Scholar 

  21. Singh, S. K., Kumar, S., Viswakarma, N., Principe, D. R., Das, S., Sondarva, G., Nair, R. S., Srivastava, P., Sinha, S. C., Grippo, P. J., Thatcher, G., Rana, B., & Rana, A. (2021). MAP4K4 promotes pancreatic tumorigenesis via phosphorylation and activation of mixed lineage kinase 3. Oncogene, 40(43), 6153–6165. https://doi.org/10.1038/s41388-021-02007-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Merritt, S. E., Mata, M., Nihalani, D., Zhu, C., Hu, X., & Holzman, L. B. (1999). The mixed lineage kinase DLK utilizes MKK7 and not MKK4 as substrate. Journal of Biology Chemistry, 274(15), 10195–10202. https://doi.org/10.1074/jbc.274.15.10195.

    Article  CAS  Google Scholar 

  23. Du, C. P., Wang, M., Geng, C., Hu, B., Meng, L., Xu, Y., Cheng, B., Wang, N., Zhu, Q. J., & Hou, X. Y. (2020). Activity-induced SUMOylation of neuronal nitric oxide synthase is associated with plasticity of synaptic transmission and extracellular signal-regulated kinase 1/2 signaling. Antioxidants & Redox Signaling, 32(1), 18–34. https://doi.org/10.1089/ars.2018.7669.

    Article  CAS  Google Scholar 

  24. Lee, H. S., Hwang, C. Y., Shin, S. Y., Kwon, K. S., & Cho, K. H. (2014). MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species. Science Signaling, 7(328), ra52. https://doi.org/10.1126/scisignal.2005260.

    Article  CAS  PubMed  Google Scholar 

  25. Rangasamy, V., Mishra, R., Mehrotra, S., Sondarva, G., Ray, R. S., Rao, A., Chatterjee, M., Rana, B., & Rana, A. (2010). Estrogen suppresses MLK3-mediated apoptosis sensitivity in ER+ breast cancer cells. Cancer Research, 70(4), 1731–1740. https://doi.org/10.1158/0008-5472.CAN-09-3492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin, W., Wang, S., Yang, Z., Lin, J., Ke, Q., Lan, W., Shi, J., Wu, S., & Cai, B. (2017). Heme oxygenase-1 inhibits neuronal apoptosis in spinal cord injury through down-regulation of Cdc42-MLK3-MKK7-JNK3 axis. Journal of Neurotrauma, 34(3), 695–706. https://doi.org/10.1089/neu.2016.4608.

    Article  PubMed  Google Scholar 

  27. Tibbles, L. A., Ing, Y. L., Kiefer, F., Chan, J., Iscove, N., Woodgett, J. R., & Lassam, N. J. (1996). MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO Journal, 15(24), 7026–7035. PMID: 9003778; PMCID: PMC452528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han, D., Zhang, Q. G., Liu, Y., Li, C., Zong, Y. Y., Yu, C. Z., Wang, W., Yan, J. Z., & Zhang, G. Y. (2008). Co-activation of GABA receptors inhibits the JNK3 apoptotic pathway via the disassembly of the GluR6-PSD95-MLK3 signaling module in cerebral ischemic-reperfusion. FEBS Letters, 582(9), 1298–1306. https://doi.org/10.1016/j.febslet.2008.02.044.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, F., Xu, Y., & Hou, X. Y. (2014). MLK3-MKK3/6-P38MAPK cascades following N-methyl-D-aspartate receptor activation contributes to amyloid-β peptide-induced apoptosis in SH-SY5Y cells. Journal of Neuroscience Research, 92(6), 808–817. https://doi.org/10.1002/jnr.23354.

    Article  CAS  PubMed  Google Scholar 

  30. Sharma, M., Gadang, V., & Jaeschke, A. (2012). Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity. Molecular Pharmacology, 82(5), 1001–1007. https://doi.org/10.1124/mol.112.079863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (32100769 to M.L. and 81100852 to C.-P.D.), the Natural Science Foundation of the Jiangsu Higher Education Institutions (20KJA310010 to C.-P.D.), and Xuzhou Medical University (D2020054 to M.L.)

Author contributions

Y.J., M.L., and C.P.D. designed research; Y.J., B.X.W., Y.X., and L.M. performed biochemical research and analyzed data; M.L. and C.P.D. wrote the paper and provided supervision and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-Ping Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, BX., Xie, Y. et al. MLK3 localizes mainly to the cytoplasm and promotes oxidative stress injury via a positive feedback loop. Cell Biochem Biophys 81, 469–479 (2023). https://doi.org/10.1007/s12013-023-01159-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01159-8

Keywords

Navigation