Skip to main content

Advertisement

Log in

Pancreatic β-Cell Apoptosis in Normoglycemic Rats is Due to Mitochondrial Translocation of p53-Induced by the Consumption of Sugar-Sweetened Beverages

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Overstimulation of pancreatic β-cells can lead to dysfunction and death, prior to the clinical manifestations of type 2 diabetes (T2D). The excessive consumption of carbohydrates induces metabolic alterations that can affect the functions of the β-cells and cause their death. We analyzed the role of p53 in pancreatic β cell death in carbohydrate-supplemented Sprague Dawley rats. For four months, the animals received drinking water containing either 40% sucrose or 40% fructose. The glucose tolerance test was performed at week 15. Apoptosis was assessed with the TUNEL assay (TdT-mediated dUTP-nick end-labeling). Bax, p53, and insulin were assessed by Western blotting, immunofluorescence, and real-time quantitative PCR. Insulin, triacylglycerol, and serum glucose and fatty acids in pancreatic tissue were measured. Carbohydrate consumption promotes apoptosis and mobilization of p53 from the cytosol to rat pancreatic β-cell mitochondria before blood glucose rises. An increase in p53, miR-34a, and Bax mRNA was also detected (P < 0.001) in the sucrose group. As well as hypertriglyceridemia, hyperinsulinemia, glucose intolerance, insulin resistance, visceral fat accumulation, and increased pancreatic fatty acids in the sucrose group. Carbohydrate consumption increases p53 and its mobilization into β-cell mitochondria and coincides with the increased rate of apoptosis, which occurs before serum glucose levels rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data used in this study are included in the article.

References

  1. Butler, A. E., Janson, J., & Bonner-Weir, S. (2003). β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 52, 102–10.

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, R. J., Nakagawa, T., Sanchez-Lozada, G., Shafiu, M., Sundaram, S., & Le, M., et al. (2013). Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 62, 3307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ying, W., Fu, W., Lee, Y. S., & Olefsky, J. M. (2019). The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nature Reviews Endocrinology, 16(2), 81–90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121), 840–6.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson, R. J., Segal, M. S., Sautin, Y., Nakagawa, T., Feig, D. I., & Kang, D.-H., et al. (2007). Potential role of sugar (fructuose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. The American Journal of Clinical Nutrition, 86(4), 899–906.

    CAS  PubMed  Google Scholar 

  6. Balakumar, M., Raji, L., Prabhu, D., Sathishkumar, C., Prabu, P., & Mohan, V., et al. (2016). High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Molecular and Cellular Biochemistry, 423(1-2), 93–104.

    Article  CAS  PubMed  Google Scholar 

  7. Kyriazis, G. A., Soundarapandian, M. M., & Tyrberg, B. (2012). Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proceedings of the National Academy of Sciences United States of America, 109(8), E524–32.

    Article  CAS  Google Scholar 

  8. Ferreira Mdel, R., Lombardo, Y. B., & Chicco, A. (2010). β-Cell adaptation/dysfunction in an animal model of dyslipidemia and insulin resistance-induced by the chronic administration of a sucrose-rich diet. Islets, 2(6), 367–73.

    Article  PubMed  Google Scholar 

  9. Zhao, Z.-Z., Xin, L.-L., Xia, J.-H., Yang, S.-L., Chen, Y.-X., & Li, K. (2015). Long-term high-fat high-sucrose diet promotes enlarged islets and β-cell damage by oxidative stress in Bama minipigs. Pancreas, 44(6), 888–95.

    Article  CAS  PubMed  Google Scholar 

  10. Coskun, Z. M. (2020). ER stress amelioration by saxagliptin protects the liver against fructose-induced insulin resistance. Archieves of Medical Research, 51(4), 303–9.

    Article  CAS  Google Scholar 

  11. Asghar, Z. A., Cusumano, A., Yan, Z., Remedi, M. S., & Moley, K. H. (2017). Reduced islet function contributes to impaired glucose homeostasis in fructose-fed mice. American Journal of Physiology-Endocrinology and Metabolism, 312(2), E109–E16.

    Article  PubMed  Google Scholar 

  12. Mizukami, H., Wada, R., Koyama, M., Takeo, T., Suga, S., & Wakui, M., et al. (2008). Augmented beta cell loss and mitochondrial abnormalities in sucrose-fed GK rats. Virchows Archiv, 452(4), 383–92.

    Article  CAS  PubMed  Google Scholar 

  13. Eckel, R. H., Kahn, S. E., Ferrannini, E., Goldfine, A. B., Nathan, D. M., & Schwartz, M. W., et al. (2011). Obesity and type 2 diabetes: What can be unified and what needs to be individualized? Journal of Clinical Endocrinology & Metabolism, 96(6), 1654–63.

    Article  CAS  Google Scholar 

  14. Zhong, L., Georgia, S., Tschen, S.-I., Nakayama, K., Nakayama, K., & Bhushan, A. (2007). Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic β cells. The Journal of Clinical Investigation, 117(10), 2869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. López-Domènech, S., Abad-Jiménez, Z., Iannantuoni, F., Marañón, A. M. D., Rovira-Llopis, S., & Morillas, C., et al. (2019). Moderate weight loss attenuates chronic endoplasmic reticulum stress and mitochondrial dysfuction in human obesity. Molecular Metabolism, 19, 24–33.

    Article  PubMed  Google Scholar 

  16. Anello, M., Lupi, R., Spampinato, D., Piro, S., Masini, M., & Boggi, U., et al. (2005). Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia, 48(2), 282–9.

    Article  CAS  PubMed  Google Scholar 

  17. Flores-López, L. A., Díaz-Flores, M., García-Macedo, R., Ávalos-Rodríguez, A., Vergara-Onofre, M., & Cruz, M., et al. (2013). High glucose induces mitochondrial p53 phosphorylation by p38 MAPK in pancreatic RINm5F cells. Molecular Biology Reports, 40(8), 4947–58.

    Article  PubMed  Google Scholar 

  18. Marchenko, N. D., & Moll, U. M. (2014). Mitochondrial death functions of p53. Molecular & Cellular Oncology, 1(2), e955995.

    Article  CAS  Google Scholar 

  19. Hinault, C., Kawamori, D., Liew, C. W., Maier, B., Hu, J., & Keller, S. R., et al. (2011). D40 isoform of p53 controls β-cell proliferation and glucose homeostasis in mice. Diabetes., 60, 1210–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iglesias-Ara, A., Zenarruzabeitia, O., Buelta, L., Merino, J., & Zubiaga, A. M. (2015). E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution. Cell Death & Differentiation, 22(10), 1577–89.

    Article  CAS  Google Scholar 

  21. Hermeking, H. (2012). MicroRNA in the p53 network: Micromanagement of tumour supressiom. Nature Reviews Cancer, 12(9), 613–26.

    Article  CAS  PubMed  Google Scholar 

  22. Navarro, F., & Lieberman, J. (2015). miR-34 and p53: New insights into a complex functional relationship. Plos One, 10(7), e0132767.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alipour, M. R., Naderi, R., Alihemmati, A., Sheervalilou, R., & Ghiasi, R. (2020). Swimming training attenuates pancreatic apoptosis through miR-34a/Sirtu in1/P53 axis in high-fat diet and Streptozotocin-induced Type-2 diabetic rats. Journal of Diabetes & Metabolic Disorder, 19, 1438–46.

    Article  Google Scholar 

  24. Elibol, B., & Kilic, U. (2018). High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Frontiers in Endocrinology, 9, 614.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cnop, M., Welsh, N., Jonas, J.-C., Jörns, A., Lenzen, S., & Eizirik, D. L. (2005). Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes, 54, S97–S107.

    Article  CAS  PubMed  Google Scholar 

  26. Rokavec, M., Li, H., Jiang, L., & Hermeking, H. (2014). The p53/miR-34 axis in development and disease. Journal of Molecular Cell Biology, 6(3), 214–30.

    Article  CAS  PubMed  Google Scholar 

  27. Fan, F., Zhuang, J., Zhou, P., Liu, X., & Luo, Y. (2017). MicroRNA-34a promotes mitochondrial dysfunction-induced apoptosis in human lens epithelial cells by targeting Notch2. Oncotarget, 8(66), 110209–20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bazrgar, M., Khodabakhsh, P., Prudencio, M., Mohagheghi, F., & Ahmadiani, A. (2021). The role of microRNA-34 family in Alzheimer´s disease: A potential molecular link between neurodegeneration and metabolic disorders. Pharmacological Research, 172(2021), 105805.

    Article  CAS  PubMed  Google Scholar 

  29. Boini, K. M., Graf, D., Hennige, A. M., Koka, S., Kempe, D. S., & Wang, K., et al. (2009). Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 296(6), R1695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–9.

    Article  CAS  PubMed  Google Scholar 

  31. Simental-Mendia, L. E., Rodríguez-Moran, M., & Guerrero-Romero, F. (2008). The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metabolic Syndrome and Related Disorder, 6(4), 299–304.

    Article  CAS  Google Scholar 

  32. Uhlemeyer, C., Müller, N., Grieß, K., Wessel, C., Schlegel, C., & Kuboth, J., et al. (2020). ATM and P53 differentially regulate pancreatic beta cell survival in Ins1E cells. PLoS One, 15(8), e0237669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tornovsky-Babeay, S., Dadon, D., Ziv, O., Tzipilevich, E., Kadosh, T., & Haroush, R. S.-B., et al. (2014). Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β-cells. Cell Metabolism, 19(1), 109–21.

    Article  CAS  PubMed  Google Scholar 

  34. Hoshino, A., Ariyoshi, M., Okawa, Y., Kaimoto, S., Uchihashi, M., & Fukai, K., et al. (2014). Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes. Proceedings of the National Academy of Sciences, 111(8), 3116–21.

    Article  CAS  Google Scholar 

  35. Secchiero, P., Toffoli, B., Melloni, E., Agnoletto, C., Monasta, L., & Zauli, G. (2013). The MDM2 inhibitor Nutlin-3 attenuates streptozotocin-induced diabetes mellitus and increases serum level of IL-12p40. Acta Diabetologica, 50(6), 899–906.

    Article  CAS  PubMed  Google Scholar 

  36. Uhlemeyer, C., Müller, N., Rieck, M., Kuboth, J., Schlegel, C., & Grieß, K., et al. (2023). Selective ablation of P53 in pancreatic beta cells fails to ameliorate glucose metabolism in genetic, dietary and pharmacological models of diabetes mellitus. Molecular Metabolism, 67, 101650.

    Article  CAS  PubMed  Google Scholar 

  37. Mostafa, T. M., Hegazy, S. K., Elnaidany, S. S., Shehabeldin, W. A., & Sawan, E. S. (2021). Nigella sativa as a promising intervention for metabolic and inflammatory disorders in obese prediabetic subjects: A comparative study of Nigella sativa versus both lifestyle modification and metformin. Journal of Diabetes and its Complications, 35(7), 107947.

    Article  CAS  PubMed  Google Scholar 

  38. Nyblom, H. K., Bugliani, M., Fung, E., Boggi, U., Zubarev, R., & Marchetti, P., et al. (2009). Apoptotic, regenerative, and immune-related signaling in human islets from type 2 diabetes individuals. Journal of Proteome Research, 8(12), 5650–6.

    Article  CAS  PubMed  Google Scholar 

  39. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., & Pancoska, P., et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Molecular Cell, 11(3), 577–90.

    Article  CAS  PubMed  Google Scholar 

  40. Ortega-Camarillo, C., Guzmán-Grenfell, A. M., García-Macedo, R., Rosales-Torres, A. M., Ávalos-Rodríguez, A., & Duran-Reyes, G., et al. (2006). Hyperglycemia induces apoptosis and p53 mobilization to mitochondria in RINm5F cells. Molecular and Cellular Biochemistry, 281, 163–70.

    Article  CAS  PubMed  Google Scholar 

  41. Webb, G. C., Akbar, M. S., Zhao, C., & Steine, D. F. (2001). Expression profiling of pancreatic β-cells. Glucose regulation of secretory and metabolic pathway genes. Diabetes., 50(supp 1), S135–S6.

    Article  CAS  PubMed  Google Scholar 

  42. Backe, M. B., Novotny, G. W., Christensen, D. P., Grunnet, L. G., & Mandrup-Poulsen, T. (2014). Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets, 6(1), e27754-e.

    Article  Google Scholar 

  43. Lin, X., Guan, H., Huang, Z., Liu, J., Li, H., & Wei, G., et al. (2014). Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. Journal of Diabetes Research, 2014, 258695.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rottiers, V., & Näär, A. M. (2012). MicroRNAs in metabolism and metabolic disorders. Nature Reviews Molecular Cell Biology, 13(4), 239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Biggelaar, L. J. C. J. D., Eussen, S. J. P. M., Sep, S. J. S., Mari, A., Ferrannini, E., & Dongen, M. C. J. M. V., et al. (2017). Associations of dietary glucose, fructose, and sucrose with β-cell function, insulin sensitivity, and type 2 diabetes in the Maastricht Study. Nutrients, 9(4), 380–95.

    Article  PubMed  Google Scholar 

  46. Lovis, P., Roggli, E., Laybutt, D. R., Gattesco, S., Yang, J.-Y., & Widmann, C., et al. (2008). Alterations in microRNA expression contribute to fatty acid–induced pancreatic β-cell dysfunction. Diabetes, 57(10), 2728–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wen, F., An, C., Wu, X., Yang, Y., Xu, J., & Liu, Y., et al. (2018). MiR-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARα pathway in HepG2 cells. The International Journal of Biochemistry & Cell Biology, 94, 133–45.

    Article  CAS  Google Scholar 

  48. Loza‑Medrano, S. S., Baiza‑Gutman, L. A., Manuel‑Apolinar, L., García‑Macedo, R., Damasio-Santana, L., & Martínez‑Mar, O. A., et al. (2020). High fructose‑containing drinking water‑induced steatohepatitis in rats is prevented by the nicotinamide‑mediated modulation of redox homeostasis and NADPH‑producing enzymes. Molecular Biology Reports, 47(1), 337–51.

    Article  PubMed  Google Scholar 

  49. Ángeles-Mejía, S., Baiza-Gutman, L. A., Ortega-Camarillo, C., Medina-Navarro, R., Sánchez-Becerra, M. C., & Damasio-Santana, L., et al. (2018). Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP+ and GSH/GSSG ratios and reducing oxidative and inflammatory stress. European Journal of Pharmacology, 818(2018), 499–507.

    Article  Google Scholar 

  50. Pokrywczynska, M., Flisinski, M., Jundzill, A., Krzyzanowska, S., Brymora, A., & Deptula, A., et al. (2014). Impact of fructose diet and renal failure on the function of pancreatic islets. Pancreas, 43(5), 801–8.

    Article  CAS  PubMed  Google Scholar 

  51. Yuan, H., Zhang, X., Huang, X., Lu, Y., Tang, W., & Man, Y., et al. (2010). NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of β-cells via JNK, p38 MAPK and p53 pathways. PLoS One, 5(12), e15726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tushuizen, M. E., Bunck, M. C., Pouwels, P. J., Bontemps, S., Waesberghe, J. H. T. V., & Schindhelm, R. K., et al. (2007). Pancreatic fat content and β-cell function in men with and without Type 2 diabetes. Diabetes Care, 30(11), 2916–21.

    Article  CAS  PubMed  Google Scholar 

  53. Poitout, V. (2008). Glucolipotoxicity of the pancreatic beta-cell: myth or reality? Biochemical Society Transactions, 36(5), 901–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Malik, V. S., Popkin, B. M., Bray, G. A., Després, J.-P., Willett, W. C., & Hu, F. B. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes. A meta-analysis. Diabetes Care, 33(11), 2477–83.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lamb, M. M., Frederiksen, B., Seifert, J. A., Kroehl, M., Rewers, M., & Norris, J. M. (2015). Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: The Diabetes Autoimmunity Study in the Young. Diabetologia, 58, 2027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hafidi, M. E., Cuéllar, A., Ramı́rez, J., & Baños, G. (2001). Effect of sucrose addition to drinking water, that induces hypertension in the rats, on liver microsomal Δ9 and Δ5-desaturase activities. The Journal of Nutritional Biochemistry, 12(7), 396–403.

    Article  PubMed  Google Scholar 

  57. Handjieva-Darlenska, T., & Boyadjieva, N. (2009). The effect of high-fat diet on plasma ghrelin and leptin levels in rats. Journal of Physiology Biochemistry, 65(2), 157–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is part ofC the requirements for obtaining a Doctoral degree at the Posgrado en Ciencias Biológicas, UNAM of RBG. We thank too the CONACYT for RBG scholarship.

Funding

This research was supported by the Fondo de Investigación en Salud, IMSS (Grant. FIS/IMSS/PROT/G15/1427).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [C.O.-C.], Methodology: [R.B.-G.; A.C.-R., A.C.-C., A.A.-R., G.D.-R.]; Formal analysis and investigation: [C.O.-C., R.B.-G.; M.D.-F., F.S.-S., J.G.-Z.]; Writing - original draft preparation: [C.O.-C., A.A.-R.]; Writing - review and editing: [C.O.-C., R.B.-G.; A.C.R., A.C.-C., M.C., F.S.-S., J.G.-Z., G.D.-R., A.A.-R., M.D.-F.], Funding acquisition: [C.O.-C.]; Resources: [C.O.-C.]; Supervision: [C.O.-C.]

Corresponding author

Correspondence to Clara Ortega-Camarillo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzalobre-Geronimo, R., Contreras-Ramos, A., Cervantes-Cruz, A.I. et al. Pancreatic β-Cell Apoptosis in Normoglycemic Rats is Due to Mitochondrial Translocation of p53-Induced by the Consumption of Sugar-Sweetened Beverages. Cell Biochem Biophys 81, 503–514 (2023). https://doi.org/10.1007/s12013-023-01147-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01147-y

Keywords

Navigation