Skip to main content
Log in

PPARγ Regulates Macrophage Polarization by Inhibiting the JAK/STAT Pathway and Attenuates Myocardial Ischemia/Reperfusion Injury In Vivo

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study aimed to investigate the role of PPARγ and underlying mechanisms in myocardial ischemia/reperfusion injury (IRI). IRI was surgically induced in mice and neonatal rat cardiomyocytes (NRCM) were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R). Quantitative genetic analysis and western blotting were performed to assess mRNA and protein levels, respectively, of PPARγ, as well as of different inflammatory, fibrosis, and apoptosis markers in cells and tissues. PPARγ was overexpressed in the heart of mice and NRCMs by viral transfection. Apoptosis and fibrosis were detected by TUNEL and Masson’s trichrome staining, respectively. Enzyme-linked immunosorbent assay was performed to detect M1 and M2 macrophage-related inflammatory factors present in mouse sera. PPARγ overexpression significantly inhibited OGD/R- and IRI-induced cardiomyocyte apoptosis and fibrosis in vitro and in vivo. Moreover, PPARγ overexpression inhibited IRI-induced secretion of M1-related proinflammatory factors, whereas it supported the secretion of M2-related anti-inflammatory factors. Notably, these events were found to be mediated by the JAK/STAT pathway. In conclusion, PPARγ regulates macrophage polarization upon IRI via the JAK/STAT pathway, which will in turn prevent myocardial apoptosis and fibrosis. Hence, PPARγ may represent a valuable target for myocardial IRI treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

IL:

interleukin

IRI:

ischemia/reperfusion injury

NRCM:

neonatal rat cardiomyocyte

OGD/R:

oxygen-glucose deprivation and reoxygenation

PPAR:

peroxisome proliferator-activated receptor

RT-qPCR:

Real-time quantitative polymerase chain reaction

TGF:

transforming growth factor.

References

  1. Wu, M. Y. et al. (2018). Current mechanistic concepts in ischemia and reperfusion injury. Cellular Physiology and Biochemistry, 46(4), 1650–1667.

    Article  CAS  PubMed  Google Scholar 

  2. Anaya-Prado, R. et al. (2002). Ischemia/reperfusion injury. Journal of Surgical Research, 105(2), 248–258.

    Article  PubMed  Google Scholar 

  3. Friedewald, J. J. & Rabb, H. (2004). Inflammatory cells in ischemic acute renal failure. Kidney International, 66(2), 486–491.

    Article  PubMed  Google Scholar 

  4. Rakhshan, K. et al. (2022). ERK/HIF-1alpha/VEGF pathway: a molecular target of ELABELA (ELA) peptide for attenuating cardiac ischemia-reperfusion injury in rats by promoting angiogenesis. Molecular Biology Reports, 49(11), 10509–10519.

    Article  CAS  PubMed  Google Scholar 

  5. Vinten-Johansen, J. et al. (2007). Inflammation, proinflammatory mediators and myocardial ischemia-reperfusion Injury. Hematology/Oncology Clinics of North America, 21(1), 123–145.

    Article  PubMed  Google Scholar 

  6. Toldo, S. et al. (2018). Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology, 315(6), H1553–h1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, H. X. et al. (2018). Inhibition of glycogen synthase kinase-3beta is involved in cardioprotection by alpha7nAChR agonist and limb remote ischemic postconditionings. Bioscience Reports, 38(5), BSR20181315.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pan, Y. et al. (2019). Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer. Journal of Hematology & Oncology, 12(1), 124.

    Article  CAS  Google Scholar 

  9. Rao, J. et al. (2020). Nogo-B is a key mediator of hepatic ischemia and reperfusion injury. Redox Biology, 37, 101745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khera, R. et al. (2022). Role of JAK-STAT and PPAR-Gamma Signalling modulators in the prevention of autism and neurological dysfunctions. Molecular Neurobiology, 59(6), 3888–3912.

    Article  CAS  PubMed  Google Scholar 

  11. Haraguchi, G. et al. (2008). Pioglitazone reduces systematic inflammation and improves mortality in apolipoprotein E knockout mice with sepsis. Intensive Care Medicine, 34(7), 1304–1312.

    Article  CAS  PubMed  Google Scholar 

  12. Shimazu, T. et al. (2005). A peroxisome proliferator-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia. Stroke, 36(2), 353–359.

    Article  CAS  PubMed  Google Scholar 

  13. Wu, L. et al. (2012). Inhibition of PPARgamma in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood, 119(1), 115–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cuzzocrea, S. (2004). Peroxisome proliferator-activated receptors gamma ligands and ischemia and reperfusion injury. Vascular Pharmacology, 41(6), 187–195.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Y. et al. (2013). JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. Journal of Pineal Research, 55(3), 275–286.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, W. Y., Zhang, Q. L. & Xu, M. J. (2019). Effects of propofol on myocardial ischemia reperfusion injury through inhibiting the JAK/STAT pathway. European Review for Medical and Pharmacological Sciences, 23(14), 6339–6345.

    PubMed  Google Scholar 

  17. Sharifi, M. et al. (2021). Necroptosis and RhoA/ROCK pathways: molecular targets of Nesfatin-1 in cardioprotection against myocardial ischemia/reperfusion injury in a rat model. Molecular Biology Reports, 48(3), 2507–2518.

    Article  CAS  PubMed  Google Scholar 

  18. Naseroleslami, M. et al. (2022). Simvastatin-loaded nano-niosomes efficiently downregulates the MAPK-NF-kappaB pathway during the acute phase of myocardial ischemia-reperfusion injury. Molecular Biology Reports, 49(11), 10377–10385.

    Article  CAS  PubMed  Google Scholar 

  19. Hausenloy, D. J. & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: a neglected therapeutic target. Journal of Clinical Investigation, 123(1), 92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, L. et al. (2018). MicroRNAs in heart and circulation during physical exercise. Journal of Sport and Health Science, 7(4), 433–441.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Takahashi, M. (2011). Role of the inflammasome in myocardial infarction. Trends in Cardiovascular Medicine, 21(2), 37–41.

    Article  CAS  PubMed  Google Scholar 

  22. Swirski, F. K., & Nahrendorf, M. (2013). Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science, 339(6116), 161–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ju, Z. et al. (2020). Anti-inflammatory effects of an optimized PPAR-gamma agonist via NF-kappaB pathway inhibition. Bioorganic Chemistry, 96, 103611 p.

    Article  CAS  PubMed  Google Scholar 

  24. Hattori, R. et al. (2001). Role of STAT3 in ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 33(11), 1929–1936.

    Article  CAS  PubMed  Google Scholar 

  25. Jin, L. et al. (2020). Ghrelin inhibits inflammatory response and apoptosis of myocardial injury in septic rats through JAK/STAT signaling pathway. European Review for Medical and Pharmacological Sciences, 24(22), 11740–11746.

    CAS  PubMed  Google Scholar 

  26. Xu, M., Li, X. & Song, L. (2020). Baicalin regulates macrophages polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway. Pharmaceutical Biology, 58(1), 655–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wynn, T. A., & Vannella, K. M. (2016). Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 44(3), 450–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Couto, G. et al. (2015). Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. Journal of Clinical Investigation, 125(8), 3147–3162.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saini, H. K. et al. (2005). Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Experimental & Clinical Cardiology, 10(4), 213–222.

    CAS  Google Scholar 

  30. Bolli, R., Dawn, B. & Xuan, Y. T. (2001). Emerging role of the JAK-STAT pathway as a mechanism of protection against ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 33(11), 1893–1896.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, X. et al. (2020). beta-Arrestin-2 attenuates hepatic ischemia-reperfusion injury by activating PI3K/Akt signaling. Aging (Albany NY), 13(2), 2251–2263.

    Article  PubMed  Google Scholar 

  32. Liu, X. et al. (2019). Ticagrelor reduces ischemia-reperfusion injury through the NF-kappaB-dependent pathway in rats. Journal of Molecular and Cellular Cardiology, 74(1), 13–19.

    CAS  Google Scholar 

  33. Fawzy, M. A. et al. (2021). Pantoprazole attenuates MAPK (ERK1/2, JNK, p38)-NF-kappaB and apoptosis signaling pathways after renal ischemia/reperfusion injury in rats. International Journal of Molecular Sciences, 22(19), 10669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xue, S. et al. (2018). Hypothermic machine perfusion attenuates ischemia/reperfusion injury against rat livers donated after cardiac death by activating the Keap1/Nrf2ARE signaling pathway. Molecular Medicine Reports, 18(1), 815–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stephanou, A. (2004). Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury. Journal of Cellular and Molecular Medicine, 8(4), 519–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh, Y. B. et al. (2013). Inhibition of Janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice. Experimental & Molecular Medicine, 45, e23.

    Article  Google Scholar 

  37. Huang, X. P. et al. (2015). Effects of the combination of the main active components of astragalus and panax notoginseng on inflammation and apoptosis of nerve cell after cerebral ischemia-reperfusion. American Journal of Chinese Medicine, 43(7), 1419–1438.

    Article  CAS  PubMed  Google Scholar 

  38. Fridman, J. S. et al. (2010). Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. Journal of Immunology, 184(9), 5298–5307.

    Article  CAS  Google Scholar 

  39. Hilbert, T. et al. (2018). Synthetic CpG oligonucleotides induce a genetic profile ameliorating murine myocardial I/R injury. Journal of Cellular and Molecular Medicine, 22(7), 3397–3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Startup Fund for Scientific Research, Fujian Medical University (Grant number: 2021QH1125) and the Research Project of Young and Middle-aged Teachers of Fujian Provincial Department of Education (Grant number: No. JAT200111).

Author information

Authors and Affiliations

Authors

Contributions

S.W. performed the experiments and data analysis. Y.C. and R.B. conceived and designed the study. Y.W. and Q.L. made the acquisition of data. Y.C. and C.W. found resources required. All authors read and approved the manuscript.

Corresponding author

Correspondence to Chunchun Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Cai, Y., Bu, R. et al. PPARγ Regulates Macrophage Polarization by Inhibiting the JAK/STAT Pathway and Attenuates Myocardial Ischemia/Reperfusion Injury In Vivo. Cell Biochem Biophys 81, 349–358 (2023). https://doi.org/10.1007/s12013-023-01137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01137-0

Keywords

Navigation