Skip to main content

Advertisement

Log in

IGF-1R Transported to the Cell Nuclei to Regulate the Proliferation of Breast Cancer Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Under normal physiological conditions, IGF-1 (insulin-like growth factor-1) has important biological effects. However, many studies have found that IGF-1 is closely related to the occurrence and development of breast cancer. But up to now, the cellular properties of IGF-1 have not been systematically explored in breast cancer cell. It is well-known that the cellular properties and behaviors of IGF-1/IGF-1R are closely related to its biological functions. In the current study, we used the breast cancer cell line as a model to explore the biological characteristics of IGF-1/IGF-1R, and found that IGF-1/IGF-1R can be internalized into the cytoplasm. In addition, we also found that IGF-1R can also enter cell nuclei under the mediation of IGF-1. Further research found that the nuclear-localized IGF-1R has important potential biological effects, which is closely associated to the proliferation of breast cancer cell, this may be achieved by regulating IGF-1R-mediated intracellular signaling. The current research has laid the foundation for investigating the relationship between IGF-1/IGF-1R system and the occurrence and development of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feng, Z., & Levine, A. J. (2010). The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends in Cell Biology, 20(7), 427–434.

    Article  CAS  Google Scholar 

  2. Ascenzi, F., Barberi, L., Dobrowolny, G., Villa Nova Bacurau, A., Nicoletti, C., Rizzuto, E., & Musarò, A. (2019). Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell, 18(3), e12954.

    Article  Google Scholar 

  3. Rigiracciolo, D. C., Nohata, N., Lappano, R., Cirillo, F., Talia, M., Scordamaglia, D., & Maggiolini, M. (2020). IGF-1/IGF-1R/FAK/YAP transduction signaling prompts growth effects in triple-negative breast cancer (TNBC) cells. Cells, 9(4), 1010.

    Article  CAS  Google Scholar 

  4. Forbes, B. E., Blyth, A. J., & Wit, J. M. (2020). Disorders of IGFs and IGF-1R signaling pathways. Molecular and Cellular Endocrinology, 518, 1110354

    Article  Google Scholar 

  5. Delafontaine, P., Song, Y. H., & Li, Y. (2004). Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(3), 435–444.

    Article  CAS  Google Scholar 

  6. Troncoso, R., Ibarra, C., Vicencio, J. M., Jaimovich, E., & Lavandero, S. (2014). New insights into IGF-1 signaling in the heart. Trends in Endocrinology and Metabolism, 25(3), 128–137.

    Article  CAS  Google Scholar 

  7. Shuang, T., Fu, M., Yang, G., Wu, L., & Wang, R. (2018). The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells. Biochemical Pharmacology, 149, 143–152.

    Article  CAS  Google Scholar 

  8. Baserga, R., Peruzzi, F., & Reiss, K. (2003). The IGF-1 receptor in cancer biology. International Journal of Cancer, 107(6), 873–877.

    Article  CAS  Google Scholar 

  9. AsghariHanjani, N., & Vafa, M. (2019). The role of IGF-1 in obesity, cardiovascular disease, and cancer. Medical Journal of the Islamic Republic of Iran, 33, 56.

    PubMed  PubMed Central  Google Scholar 

  10. Jentzsch, T., Robl, B., Husmann, M., Bode-Lesniewska, B., & Fuchs, B. (2014). Worse prognosis of breast cancer patients expressing IGF-1 on a tissue microarray. Anticancer Research, 34(8), 3881–3889.

    PubMed  Google Scholar 

  11. Tang, W., Feng, X., Zhang, S., Ren, Z., Liu, Y., Yang, B., & Ge, N. (2015). Caveolin-1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway. Cellular Physiology and Biochemistry, 36(3), 1223–1236.

    Article  CAS  Google Scholar 

  12. Foti, M., Ahmed Moukil, M., Dudognon, P., & Carpentier, J. L. (2004). Insulin and IGF-1 receptor trafficking and signalling. In Biology of IGF-1: its interaction with insulin in health and malignant states: Novartis Foundation Symposium 262 (Vol. 262, pp. 125–147). Chichester, UK: John Wiley & Sons, Ltd.

  13. Armakolas, N., Armakolas, A., Antonopoulos, A., Dimakakos, A., Stathaki, M., & Koutsilieris, M. (2016). The role of the IGF-1 Ec in myoskeletal system and breast cancer pathophysiology. Critical Reviews in Oncology/Hematology, 108, 137–145.

    Article  Google Scholar 

  14. Burrow, S., Andrulis, I. L., Pollak, M., & Bell, R. S. (1998). Expression of insulin-like growth factor receptor, IGF-1, and IGF-2 in primary and metastatic breast cancer. Journal of Surgical Oncology, 69(1), 21–27.

    Article  CAS  Google Scholar 

  15. Zhang, W., Lee, J. C., Kumar, S., & Gowen, M. (1999). ERK Pathway Mediates the Activation of Cdk2 in IGF-1–Induced Proliferation of Human Breast cancer MG-63 Cells. Journal of Bone and Mineral Research, 14(4), 528–535.

    Article  CAS  Google Scholar 

  16. Crudden, C., Song, D., Cismas, S., Trocmé, E., Pasca, S., Calin, G. A., & Girnita, L. (2019). Below the surface: IGF-1R therapeutic targeting and its endocytic journey. Cells, 8(10), 1223.

    Article  CAS  Google Scholar 

  17. Anisimov, V. N., & Bartke, A. (2013). The key role of growth hormone–insulin–IGF-1 signaling in aging and cancer. Critical Reviews in Oncology/Hematology, 87(3), 201–223.

    Article  Google Scholar 

  18. Tentori, L., & Graziani, G. (2007). Doping with growth hormone/IGF-1, anabolic steroids or erythropoietin: is there a cancer risk? Pharmacological Research, 55(5), 359–369.

    Article  CAS  Google Scholar 

  19. Tentori, L., & Graziani, G. (2007). Doping with growth hormone/IGF-1, anabolic steroids or erythropoietin: is there a cancer risk? Pharmacological Research, 55.5, 359–369.

    Article  Google Scholar 

  20. Pemberton, L. F., Blobel, G., & Rosenblum, J. S. (1998). Transport routes through the nuclear pore complex. Current Opinion in Cell Biology, 10(3), 392–399.

    Article  CAS  Google Scholar 

  21. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T., & Matunis, M. J. (2002). Proteomic analysis of the mammalian nuclear pore complex. The Journal of Cell Biology, 158(5), 915–927.

    Article  CAS  Google Scholar 

  22. Packham, S., Warsito, D., Lin, Y., Sadi, S., Karlsson, R., Sehat, B., & Larsson, O. (2015). Nuclear translocation of IGF-1R via p150 Glued and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene, 34(17), 2227–2238.

    Article  CAS  Google Scholar 

  23. Moloney, A. M., Griffin, R. J., Timmons, S., OConnor, R., Ravid, R., O, & Neill, C. (2010). Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiology of Aging, 31(2), 224–243.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Jilin Scientific and Technological Development Program [grant no. 20190905003SF], [grant no. 20190701060GH]; China Postdoctoral Science Foundation Grant [grant no. 2019M651216].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Wang.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Lv, Z., Cui, C. et al. IGF-1R Transported to the Cell Nuclei to Regulate the Proliferation of Breast Cancer Cells. Cell Biochem Biophys 79, 801–813 (2021). https://doi.org/10.1007/s12013-021-00989-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00989-8

Keywords

Navigation