Skip to main content
Log in

Hypoxic Preconditioning Combined with Microbubble-Mediated Ultrasound Effect on MSCs Promote SDF-1/CXCR4 Expression and its Migration Ability: An In Vitro Study

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Our objective is to investigate the promoting effect of hypoxic preconditioning combined with microbubble (MB)-mediated ultrasound (US) on the SDF-1/CXCR4 expression and the migration ability of mesenchymal stem cells (MSCs). Based on the uniform design, the parameters of MB-mediated US, such as the total treatment time (T), acoustic intensity (Q), and the dosage of MBs, were optimized firstly. The results were assessed by regression analysis. Using the optimum irradiation parameters, the concentration of SDF-1 in the supernatant, the expression levels of membrane CXCR4, and the cell viability of hypoxic MSCs or normoxic MSCs were compared. The in vitro transwell migration assay was performed as well. The best combination of parameters for more SDF-1 secretion and less MSCs death was T = 30 s, A = 0.6 W/cm2, and MB = 106/ml. After 24 h of hypoxic preconditioning, the expression of SDF-1 and surface CXCR4 was increased in the hypoxic MSC group as compared to the normoxic MSC group (P < 0.05). On the basis of that, MB-mediated US could further upregulate the expression of SDF-1/CXCR4 with the optimum parameters (P < 0.05), while the cell viability was only decreased by about 9–10 % compared to the untreated groups. The number of successfully migrated cells was also the largest in the hypoxic preconditioning combined with MB-mediated US group than all the other groups. The results obtained indicate the combination of hypoxic preconditioning, and MB-mediated US can upregulate the SDF-1/CXCR4 expression and improve the migration ability in MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581–2587.

    Article  CAS  Google Scholar 

  2. Yin, F., Battiwalla, M., Ito, S., Feng, X., Chinian, F., Melenhorst, J. J., et al. (2014). Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: Correlation of biological markers with clinical Responses. Stem Cells, 32, 1278–1288.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bantubungi, K., Blum, D., Cuvelier, L., Wislet-Gendebien, S., Rogister, B., Brouillet, E., et al. (2008). Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington’s disease. Molecular and Cellular Neuroscience, 37, 454–470.

    Article  CAS  PubMed  Google Scholar 

  4. Díez-Tejedor, E., Gutiérrez-Fernández, M., Martínez-Sánchez, P., Rodríguez-Frutos, B., Ruiz-Ares, G., Lara, M. L., et al. (2014). Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: A safety assessment: A phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. Journal of Stroke and Cerebrovascular Diseases, 23, 2694–2700.

    Article  PubMed  Google Scholar 

  5. Chavakis, E., Urbich, C., & Dimmeler, S. (2008). Homing and engraftment of progenitor cells: A prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology, 45, 513–522.

    Article  Google Scholar 

  6. Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111, 2198–2202.

    Article  PubMed  Google Scholar 

  7. Lau, T. T., & Wang, D. A. (2011). Stromal cell derived factor-1 (SDF-1): Homing factor for engineered regenerative medicine. Expert Opinion on Biological Therapy, 11, 189–197.

    Article  CAS  PubMed  Google Scholar 

  8. Schober, A., Karshovska, E., Zernecke, A., & Weber, C. (2006). SDF-1alpha-mediated tissue repair by stem cells, a promising tool in cardiovascular medicine? Trends in Cardiovascular Medicine, 16, 103–108.

    Article  CAS  PubMed  Google Scholar 

  9. Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25, 977–988.

    Article  CAS  PubMed  Google Scholar 

  10. Salem, H. K., & Thiemermann, C. (2009). Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells, 28, 585–596.

    PubMed Central  Google Scholar 

  11. Wynn, R. F., Hart, C. A., Corradi-Perini, C., O’Neill, L., Evans, C. A., Ed Wraith, J., et al. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643–2645.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, B., Xu, D., Deng, X., Chen, Q., Huang, Y., Peng, H., et al. (2012). CXCL12 enhances human neural progenitor cell survival through a CXCR7- and CXCR4-mediated endocytotic signaling pathway. Stem Cells, 30, 2571–2583.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Das, R., Jahr, H., van Osch, G. J., & Farrell, E. (2010). The role of hypoxia in bone marrow derived mesenchymal stem cells: Considerations for regenerative medicine approaches. Tissue Engineering Part B, 16, 159–168.

    Article  CAS  Google Scholar 

  14. Grayson, W. L., Zhao, F., Bunnell, B., & Ma, T. (2007). Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 358, 948–953.

    Article  CAS  PubMed  Google Scholar 

  15. Hung, S. C., Pochampally, R. R., Hsu, S. C., Sanchez, C., Chen, S. C., Spees, J., et al. (2007). Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One, 2, e416.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hu, X., Yu, S. P., Fraser, J. L., Lu, Z., Ogle, M. E., Wang, J. A., et al. (2008). Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. Journal of Thoracic and Cardiovascular Surgery, 135, 799–808.

    Article  CAS  PubMed  Google Scholar 

  17. Zen, K., Okigaki, M., Hosokawa, Y., Adachi, Y., Nozawa, Y., et al. (2006). Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. Journal of Molecular and Cellular Cardiology, 40, 799–809.

    Article  CAS  PubMed  Google Scholar 

  18. Ghanem, A., Steingen, C., Brenig, F., Funcke, F., Bai, Z. Y., Hall, C., et al. (2009). Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 47, 411–418.

    Article  CAS  PubMed  Google Scholar 

  19. Tong, J. Y., Ding, J. D., Shen, X. B., Chen, L., Bian, Y. P., Ma, G. S., et al. (2013). Mesenchymal stem cell transplantation enhancement in myocardial infarction rat model under ultrasound combined with nitric oxide microbubbles. PLoS One, 14, e80186.

    Article  Google Scholar 

  20. Liu, P., Wang, X., Zhou, S., Hua, X., Liu, Z., & Gao, Y. (2011). Effects of a novel ultrasound contrast agent with long persistence on right ventricular pressure: Comparison with SonoVue. Ultrasonics, 51, 210–214.

    Article  CAS  PubMed  Google Scholar 

  21. Unger, E. C., Hersh, E., Vannan, M., Matsunaga, T. O., & McCreery, T. (2001). Local drug and gene delivery through microbubbles. Progress in Cardiovascular Diseases, 44, 45–54.

    Article  CAS  PubMed  Google Scholar 

  22. Li, P. J., Gao, Y. H., Liu, Z., Tan, K. B., Zhuo, Z. X., Xia, H. M., et al. (2012). DNA transfection of bone marrow stromal cells using microbubble-mediated ultrasound and polyethylenimine: An in vitro study. Cell Biochemistry and Biophysics, 66, 775–786.

    Article  Google Scholar 

  23. Miyake, Y., Ohmori, K., Yoshida, J., Ishizawa, M., Mizukawa, M., Yukiiri, K., et al. (2007). Granulocyte colony-stimulating factor facilitates the angiogenesis induced by ultrasonic microbubble destruction. Ultrasound in Medicine and Biology, 33, 1796–1804.

    Article  PubMed  Google Scholar 

  24. Qin, P., Xu, L., Hu, Y., Zhong, W., Cai, P., et al. (2014). Sonoporation-induced depolarization of plasma membrane potential: Analysis of heterogeneous impact. Ultrasound in Medicine and Biology, 40, 979–989.

    Article  PubMed  Google Scholar 

  25. Meijering, B. D., Juffermans, L. J., van Wamel, A., Henning, R. H., Zuhorn, I. S., et al. (2009). Ultrasound and microbubble-targeted delivery of macro-molecules is regulated by induction of endocytosis and pore formation. Circulation Research, 104, 679–687.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, X. F., Lu, C. L., Liu, H., Rao, S. X., Cai, J. R., Liu, S. P., et al. (2013). Hypoxic Preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One, 8, e62703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant Nos. 81101062 and 81471795). We are particularly grateful to Dr. Cheng Yang (department of hematology, Xinqiao Hospital) for their assistance and facilities for the experiments in this manuscript.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhua Gao or Yali Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wu, S., Li, P. et al. Hypoxic Preconditioning Combined with Microbubble-Mediated Ultrasound Effect on MSCs Promote SDF-1/CXCR4 Expression and its Migration Ability: An In Vitro Study. Cell Biochem Biophys 73, 749–757 (2015). https://doi.org/10.1007/s12013-015-0698-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0698-1

Keywords

Navigation