Skip to main content
Log in

Bioinformatics Approach to Evaluate Differential Gene Expression of M1/M2 Macrophage Phenotypes and Antioxidant Genes in Atherosclerosis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Atherosclerosis is a pro-inflammatory process intrinsically related to systemic redox impairments. Macrophages play a major role on disease development. The specific involvement of classically activated, M1 (pro-inflammatory), or the alternatively activated, M2 (anti-inflammatory), on plaque formation and disease progression are still not established. Thus, based on meta-data analysis of public micro-array datasets, we compared differential gene expression levels of the human antioxidant genes (HAG) and M1/M2 genes between early and advanced human atherosclerotic plaques, and among peripheric macrophages (with or without foam cells induction by oxidized low density lipoprotein, oxLDL) from healthy and atherosclerotic subjects. Two independent datasets, GSE28829 and GSE9874, were selected from gene expression omnibus (http://www.ncbi.nlm.nih.gov/geo/) repository. Functional interactions were obtained with STRING (http://string-db.org/) and Medusa (http://coot.embl.de/medusa/). Statistical analysis was performed with ViaComplex® (http://lief.if.ufrgs.br/pub/biosoftwares/viacomplex/) and gene score enrichment analysis (http://www.broadinstitute.org/gsea/index.jsp). Bootstrap analysis demonstrated that the activity (expression) of HAG and M1 gene sets were significantly increased in advance compared to early atherosclerotic plaque. Increased expressions of HAG, M1, and M2 gene sets were found in peripheric macrophages from atherosclerotic subjects compared to peripheric macrophages from healthy subjects, while only M1 gene set was increased in foam cells from atherosclerotic subjects compared to foam cells from healthy subjects. However, M1 gene set was decreased in foam cells from healthy subjects compared to peripheric macrophages from healthy subjects, while no differences were found in foam cells from atherosclerotic subjects compared to peripheric macrophages from atherosclerotic subjects. Our data suggest that, different to cancer, in atherosclerosis there is no M1 or M2 polarization of macrophages. Actually, M1 and M2 phenotype are equally induced, what is an important aspect to better understand the disease progression, and can help to develop new therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ignarro, L. J. (2002). Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. Journal of Physiology and Pharmacology, 53, 503–514.

    PubMed  CAS  Google Scholar 

  2. Howell, K. W., Meng, X., Fullerton, D. A., et al. (2011). Toll-like receptor 4 mediates oxidized LDL-induced macrophage differentiation to foam cells. Journal of Surgical Research, 171, e27–e31.

    Article  PubMed  CAS  Google Scholar 

  3. Park, Y. M., Febbraio, M., & Silverstein, R. L. (2009). CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. The Journal of Clinical Investigation, 119, 136–145.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A., & Evans, R. M. (1998). PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell, 93, 241–252.

    Article  PubMed  CAS  Google Scholar 

  5. Stocker, R., & Keaney, J. F, Jr. (2004). Role of oxidative modifications in atherosclerosis. Physiological Reviews, 84, 1381–1478.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, Y. L., Chang, Y. J., & Jiang, M. J. (1999). Monocyte chemotactic protein-1 gene and protein expression in atherogenesis of hypercholesterolemic rabbits. Atherosclerosis, 143, 115–123.

    Article  PubMed  CAS  Google Scholar 

  7. Kim, J. H., Park, Y. M., Shin, J. S., et al. (2009). Fraxinellone inhibits lipopolysaccharide-induced I nducible nitric oxide synthase and cyclooxygenase-2 expression by negatively regulating nuclear factor-kappa B in RAW 264.7 macrophages cells. Biological &/and Pharmaceutical Bulletin, 32, 1062–1068.

    Article  CAS  Google Scholar 

  8. Padro, T., Lugano, R., Garcia-Arguinzonis, M., & Badimon, L. (2012). LDL-induced impairment of human vascular smooth muscle cells repair function is reversed by HMG-CoA reductase inhibition. PLoS One, 7, e38935.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Taylor, A. M., Li, F., Thimmalapura, P., et al. (2006). Hyperlipemia and oxidation of LDL induce vascular smooth muscle cell growth: an effect mediated by the HLH factor Id3. Journal of Vascular Research, 43, 123–130.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Stocker, R., Huang, A., Jeranian, E., et al. (2004). Hypochlorous acid impairs endothelium-derived nitric oxide bioactivity through a superoxide-dependent mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 2028–2033.

    Article  PubMed  CAS  Google Scholar 

  11. Doronzo, G., Viretto, M., Russo, I., et al. (2011). Nitric oxide activates PI3-K and MAPK signalling pathways in human and rat vascular smooth muscle cells: influence of insulin resistance and oxidative stress. Atherosclerosis, 216, 44–53.

    Article  PubMed  CAS  Google Scholar 

  12. Szilvassy, Z., Csont, T., Pali, T., Droy-Lefaix, M. T., & Ferdinandy, P. (2001). Nitric oxide, peroxynitrite and cGMP in atherosclerosis-induced hypertension in rabbits: beneficial effects of cicletanine. Journal of Vascular Research, 38, 39–46.

    Article  PubMed  CAS  Google Scholar 

  13. White, C. R., Brock, T. A., Chang, L. Y., et al. (1994). Superoxide and peroxynitrite in atherosclerosis. Proceedings of the National Academy of Sciences of the USA, 91, 1044–1048.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Violi, F., Pignatelli, P., Pignata, C., et al. (2013). Reduced atherosclerotic burden in subjects with genetically determined low oxidative stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 406–412.

    Article  PubMed  CAS  Google Scholar 

  15. Zinellu, E., Lepedda, A. J., Cigliano, A., et al. (2012). Association between human plasma chondroitin sulfate isomers and carotid atherosclerotic plaques. Biochemistry Research International, 2012, 281284.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pashkow, F. J. (2011). Oxidative Stress and Inflammation in Heart Disease: do Antioxidants Have a Role in Treatment and/or Prevention? International Journal of Inflammation, 2011, 514623.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gordon, S. (1998). The role of the macrophage in immune regulation. Research in Immunology, 149, 685–688.

    Article  PubMed  CAS  Google Scholar 

  18. Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews Immunology, 3, 23–35.

    Article  PubMed  CAS  Google Scholar 

  19. Gordon, S. (2003). Do macrophage innate immune receptors enhance atherogenesis? Developmental Cell, 5, 666–668.

    Article  PubMed  CAS  Google Scholar 

  20. Butcher, M. J., & Galkina, E. V. (2012). Phenotypic and functional heterogeneity of macrophages and dendritic cell subsets in the healthy and atherosclerosis-prone aorta. Frontiers in Physiology, 3, 44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Devaraj, S., & Jialal, I. (2011). C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1397–1402.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Sindrilaru, A., Peters, T., Wieschalka, S., et al. (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. The Journal of Clinical Investigation, 121, 985–997.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Liu, L., Ge, D., Ma, L., et al. (2012). Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. Journal of Thoracic Oncology, 7, 1091–1100.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Becker, M., Muller, C. B., De Bastiani, M. A., & Klamt, F. (2013). The prognostic impact of tumor-associated macrophages and intra-tumoral apoptosis in non-small cell lung cancer. Histology and Histopathology, 29(1), 21–31.

    PubMed  Google Scholar 

  25. Radonjic, M., Wielinga, P. Y., Wopereis, S., et al. (2013). Differential effects of drug interventions and dietary lifestyle in developing type 2 diabetes and complications: a systems biology analysis in LDLr-/- mice. PLoS One, 8, e56122.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Muller, C. B., De Barros, R. L., Castro, M. A., et al. (2011). Validation of cofilin-1 as a biomarker in non-small cell lung cancer: application of quantitative method in a retrospective cohort. Journal of Cancer Research and Clinical Oncology, 137, 1309–1316.

    Article  PubMed  Google Scholar 

  27. Castro, M. A., Dal-Pizzol, F., Zdanov, S., et al. (2010). CFL1 expression levels as a prognostic and drug resistance marker in nonsmall cell lung cancer. Cancer, 116, 3645–3655.

    Article  PubMed  CAS  Google Scholar 

  28. Mombach, J. C., Castro, M. A., Moreira, J. C., & De Almeida, R. M. (2008). On the absence of mutations in nucleotide excision repair genes in sporadic solid tumors. Genetics and Molecular Research, 7, 152–160.

    Article  PubMed  CAS  Google Scholar 

  29. Martinez, F. O., Gordon, S., Locati, M., & Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology, 177, 7303–7311.

    Article  CAS  Google Scholar 

  30. Baek, Y. S., Haas, S., Hackstein, H., et al. (2009). Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells. BMC Immunol, 10, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pello, O. M., De Pizzol, M., Mirolo, M., et al. (2011). Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood, 119, 411–421.

    Article  PubMed  Google Scholar 

  32. Gelain, D. P., Dalmolin, R. J., Belau, V. L., et al. (2009). A systematic review of human antioxidant genes. Frontiers Bioscience, 14, 4457–4463.

    Article  CAS  Google Scholar 

  33. Castro, M. A., Mombach, J. C., De Almeida, R. M., & Moreira, J. C. (2007). Impaired expression of NER gene network in sporadic solid tumors. Nucleic Acids Research, 35, 1859–1867.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Castro, M. A., Filho, J. L., Dalmolin, R. J., et al. (2009). ViaComplex: software for landscape analysis of gene expression networks in genomic context. Bioinformatics, 25, 1468–1469.

    Article  PubMed  CAS  Google Scholar 

  35. Subramanian, A., Tamayo, P., Mootha, V. K., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the USA, 102, 15545–15550.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Gratchev, A., Sobenin, I., Orekhov, A., & Kzhyshkowska, J. (2012). Monocytes as a diagnostic marker of cardiovascular diseases. Immunobiology, 217, 476–482.

    Article  PubMed  CAS  Google Scholar 

  37. Gratchev, A., Ovsiy, I., Manousaridis, I., et al. (2013). Novel Monocyte Biomarkers of Atherogenic Conditions. Current Pharmaceutical Design, 19(33), 5859–5864.

    Article  PubMed  CAS  Google Scholar 

  38. Graham, A., Hogg, N., Kalyanaraman, B., et al. (1993). Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Letters, 330, 181–185.

    Article  PubMed  CAS  Google Scholar 

  39. Noguchi, N., Gotoh, N., & Niki, E. (1994). Effects of ebselen and probucol on oxidative modifications of lipid and protein of low density lipoprotein induced by free radicals. Biochimica et Biophysica Acta, 1213, 176–182.

    Article  PubMed  CAS  Google Scholar 

  40. Mahmood, D. F., Abderrazak, A., Couchie, D., et al. (2013). Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis. Journal of Cellular Physiology, 228(7), 1577–1583.

    Article  PubMed  CAS  Google Scholar 

  41. Stoger, J. L., Gijbels, M. J., Van Der Velden, S., et al. (2012). Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis, 225, 461–468.

    Article  PubMed  Google Scholar 

  42. Mantovani, A., Garlanda, C., & Locati, M. (2009). Macrophage diversity and polarization in atherosclerosis: a question of balance. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1419–1423.

    Article  PubMed  CAS  Google Scholar 

  43. Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Frontiers in Bioscience, 13, 453–461.

    Article  PubMed  CAS  Google Scholar 

  44. Hirose, K., Iwabuchi, K., Shimada, K., et al. (2011). Different responses to oxidized low-density lipoproteins in human polarized macrophages. Lipids Health Dis, 10, 1.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Gray, S. P., Di Marco, E., Okabe, J., et al. (2013). Nox1 plays a key role in diabetes accelerated atherosclerosis. Circulation, 127, 1888–1902.

    Article  PubMed  CAS  Google Scholar 

  46. Blin, J., Ahmad, Z., Rampal, L. R., et al. (2013). Preliminary assessment of differential expression of candidate genes associated with atherosclerosis. Genes and Genetic Systems, 88, 199–209.

    PubMed  CAS  Google Scholar 

  47. Ye, S. (2006). Influence of matrix metalloproteinase genotype on cardiovascular disease susceptibility and outcome. Cardiovascular Research, 69, 636–645.

    Article  PubMed  CAS  Google Scholar 

  48. Pollanen, P. J., Lehtimaki, T., Mikkelsson, J., et al. (2005). Matrix metalloproteinase3 and 9 gene promoter polymorphisms: joint action of two loci as a risk factor for coronary artery complicated plaques. Atherosclerosis, 180, 73–78.

    Article  PubMed  Google Scholar 

  49. Pu, H., Yin, J., Wu, Y., et al. (2013). The association between CD14 gene C-260T polymorphism and coronary heart disease risk: a meta-analysis. Molecular Biology Reports, 40, 4001–4008.

    Article  PubMed  CAS  Google Scholar 

  50. Zhou, M. S., Chadipiralla, K., Mendez, A. J., et al. (2013). Nicotine potentiates proatherogenic effects of oxLDL by stimulating and upregulating macrophage CD36 signaling. American Journal of Physiology Heart and Circulatory Physiology, 305, H563–H574.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Hermann, M., Fischer, D., Hoffmann, M. M., et al. (2011). CRP and CD14 polymorphisms correlate with coronary plaque volume in patients with coronary artery disease–IVUS substudy of the ENCORE trials. Atherosclerosis, 220, 172–176.

    Article  PubMed  Google Scholar 

  52. Poitou, C., Dalmas, E., Renovato, M., et al. (2011). CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 2322–2330.

    Article  PubMed  CAS  Google Scholar 

  53. Konii, H., Sato, K., Kikuchi, S., et al. (2013). Stimulatory effects of cardiotrophin 1 on atherosclerosis. Hypertension, 62(5), 942–950.

    Article  PubMed  CAS  Google Scholar 

  54. Rogacev, K. S., Cremers, B., Zawada, A. M., et al. (2012). CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. Journal of the American College of Cardiology, 60, 1512–1520.

    Article  PubMed  CAS  Google Scholar 

  55. Lepedda, A. J., Zinellu, A., Nieddu, G., et al. (2013). Protein sulfhydryl group oxidation and mixed-disulfide modifications in stable and unstable human carotid plaques. Oxidative Medicine Cellular Longevity, 2013, 403973.

    PubMed  PubMed Central  Google Scholar 

  56. Giacconi, R., Cipriano, C., Muti, E., et al. (2005). Novel -209A/G MT2A polymorphism in old patients with type 2 diabetes and atherosclerosis: relationship with inflammation (IL-6) and zinc. Biogerontology, 6, 407–413.

    Article  PubMed  CAS  Google Scholar 

  57. Ponnuswamy, P., Schrottle, A., Ostermeier, E., et al. (2012). eNOS protects from atherosclerosis despite relevant superoxide production by the enzyme in apoE mice. PLoS One, 7, e30193.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Perrotta, I., Perrotta, E., Sesti, S., Cassese, M., & Mazzulla, S. (2013). MnSOD expression in human atherosclerotic plaques: an immunohistochemical and ultrastructural study. Cardiovascular Pathology, 22(6), 428–437.

    Article  PubMed  CAS  Google Scholar 

  59. Cloarec, M., Caillard, P., Provost, J. C., et al. (2007). GliSODin, a vegetal sod with gliadin, as preventative agent vs. atherosclerosis, as confirmed with carotid ultrasound-B imaging. European Annals of Allergy Clinical Immunology, 39, 45–50.

    PubMed  CAS  Google Scholar 

  60. Antoniades, C., Bakogiannis, C., Leeson, P., et al. (2011). Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin-mediated endothelial nitric oxide synthase coupling. Circulation, 124, 335–345.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Rede Instituto Brasileiro de Neurociência (IBN-Net)—01.06.0842-00 and MCT/CNPq INCT-TM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Fagundes da Rocha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rocha, R.F., De Bastiani, M.A. & Klamt, F. Bioinformatics Approach to Evaluate Differential Gene Expression of M1/M2 Macrophage Phenotypes and Antioxidant Genes in Atherosclerosis. Cell Biochem Biophys 70, 831–839 (2014). https://doi.org/10.1007/s12013-014-9987-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9987-3

Keywords

Navigation