Skip to main content
Log in

The Anti-apoptotic Effect of Polypeptide from Chlamys farreri (PCF) in UVB-Exposed HaCaT Cells Involves Inhibition of iNOS and TGF-β1

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

To investigate the molecular mechanisms of polypeptide from Chlamys farreri (PCF)’s anti-apoptotic effect, HaCaT cells were exposed to 20 mJ/CM2 UVB, with or without pretreatment of TGF-β1 antagonist SB431542, inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea sulfate (SMT), nitric oxide scavenger carboxy-PTIO, or 1.42, 2.84, and 5.69 mM PCF, or iNOS transfection (without UVB exposure). Apoptosis was confirmed with Hoechst 33258 staining; RT-PCR and western blot were used to determine the expression levels of iNOS and TGF-β1 signaling pathway. Both UVB exposure and iNOS transfection-induced apoptosis in UVB-exposed HaCat cells, while PCF, SB431542, SMT, and carboxy-PTIO all inhibited UVB-induced apoptosis. TGF-β1, Smad4, and Smad7 mRNA levels were all altered, similarly, iNOS, TGF-β1, and pSmad2/3 protein levels were all altered in UVB-exposed HaCaT cells. In pretreated cells, SB431542, SMT, carboxy-PTIO, and 1.42–5.69 mM PCF all inhibited UVB-induced apoptosis. Moreover, PCF treatment inhibited the expression levels of iNOS, TGF-β1, pSmad2/3, and Smad4, while increased the expression level of Smad7. SB431542 did not significantly alter iNOS expression, while SMT and carboxy-PTIO significantly altered TGF-β1 signaling level. The anti-apoptotic effect of PCF in UVB-exposed HaCaT cells involves the inhibition of iNOS expression and subsequently inhibition of TGF-β1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Calzavara-Pinton, P., Sala, R., Arisi, M. C., Bussoletti, C., & Celleno, L. (2013). Photobiology, photodermatology and sunscreens: A comprehensive overview. Part 1: Damage from acute and chronic solar exposure. Giornale Italiano di Dermatologia e Venereologia, 148, 89–106.

    CAS  PubMed  Google Scholar 

  2. Celleno, L., Calzavara-Pinton, P., Sala, R., Arisi, M. C., & Bussoletti, C. (2013). Photobiology, photodermatology and sunscreens: A comprehensive overview. Part 2: Topical and systemic photoprotection. Giornale Italiano di Dermatologia e Venereologia, 148, 107–133.

    CAS  PubMed  Google Scholar 

  3. Svobodová, A. R., Galandáková, A., Sianská, J., Doležal, D., Lichnovská, R., Ulrichová, J., et al. (2012). DNA damage after acute exposure of mice skin to physiological doses of UVB and UVA light. Archives of Dermatological Research, 304, 407–412.

    Article  PubMed  Google Scholar 

  4. Syed, D. N., Khan, M. I., Shabbir, M., & Mukhtar, H. (2013). MicroRNAs in skin response to UV radiation. Current Drug Targets, 14, 1128–1134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bikle, D. D. (2012). Protective actions of vitamin D in UVB induced skin cancer. Photochemical & Photobiological Sciences, 11, 1808–1816.

    Article  CAS  Google Scholar 

  6. Stahl, W., & Sies, H. (2012). β-Carotene and other carotenoids in protection from sunlight. American Journal of Clinical Nutrition, 96, 1179S–1184S.

    Article  CAS  PubMed  Google Scholar 

  7. Van Dross, R., Xue, Y., Knudson, A., & Pelling, J. C. (2003). The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines. Journal of Nutrition, 133, 3800S–3804S.

    PubMed  Google Scholar 

  8. Wang, S., Hou, R., Bao, Z., Du, H., He, Y., Su, H., et al. (2013). Transcriptome sequencing of Zhikong scallop (Chlamys farreri) and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis). PLoS ONE, 8, e63927.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gao, M. Q., Guo, S. B., Chen, X. H., Du, W., & Wang, C. B. (2007). Molecular mechanisms of polypeptide from Chlamys farreri protecting HaCaT cells from apoptosis induced by UVA plus UVB. Acta Pharmacologica Sinica, 28, 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Z., Liu, X., Liu, T., Yan, L., Wang, Y., & Wang, C. (2009). Polypeptide from Chlamys farreri inhibits UVB-induced apoptosis of HaCaT cells via iNOS/NO and HSP90. Chinese Journal of Oceanology and Limnology, 27, 594–599.

    Article  CAS  Google Scholar 

  11. Wang, X., Jiang, Q., Wang, W., Su, L., Han, Y., & Wang, W. (2013). Molecular mechanism of polypeptides from Chlamys farreri (PCF)’s anti-apoptotic effect in UVA-exposed HaCaT cells involves HSF1/HSP70, JNK, XO, iNOS and NO/ROS. Journal of Photochemistry and Photobiology B: Biology, 130C, 47–56.

    Article  Google Scholar 

  12. Ciurea, A., Palade, C., Voinescu, D., & Nica, D. (2013). Subarachnoid hemorrhage and cerebral vasospasm—Literature review. Journal of Medicine and Life, 6, 120–125.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Barreiro Arcos, M. L., Sterle, H. A., Vercelli, C., Valli, E., Cayrol, M. F., Klecha, A. J., et al. (2013). Induction of apoptosis in T lymphoma cells by long-term treatment with thyroxine involves PKCζ nitration by nitric oxide synthase. Apoptosis, 11, 1376–1390.

    Article  Google Scholar 

  14. Napoli, C., Paolisso, G., Casamassimi, A., Al-Omran, M., Barbieri, M., Sommese, L., et al. (2013). Effects of nitric oxide on cell proliferation: Novel insights. Journal of the American College of Cardiology, 62, 89–95.

    Article  CAS  PubMed  Google Scholar 

  15. Stuehr, D. J. (1999). Mammalian nitric oxide synthases. Biochimica et Biophysica Acta, 1411, 217–230.

    Article  CAS  PubMed  Google Scholar 

  16. Murakami, A. (2009). Chemoprevention with phytochemicals targeting inducible nitric oxide synthase. Forum of Nutrition, 61, 193–203.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, W., & Wu, S. (2010). Differential roles of nitric oxide synthases in regulation of ultraviolet B light-induced apoptosis. Nitric Oxide, 23, 199–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Itoh, S., & ten Dijke, P. (2007). Negative regulation of TGF-beta receptor/Smad signal transduction. Current Opinion in Cell Biology, 19, 176–184.

    Article  CAS  PubMed  Google Scholar 

  19. Ikeda, K., Nakajima, T., Yamamoto, Y., Takano, N., Tanaka, T., Kikuchi, H., et al. (2013). Roles of transient receptor potential canonical (TRPC) channels and reverse-mode Na+/Ca2+ exchanger on cell proliferation in human cardiac fibroblasts: Effects of transforming growth factor β1. Cell Calcium, 54, 213–225.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, R. P., Bai, T., Zhou, X. G., Xu, C. G., Wang, W., Xu, M. W., et al. (2013). Lefty a protein inhibits TGF-β1-mediated apoptosis in human renal tubular epithelial cells. Molecular Medicine Reports, 8, 621–625.

    PubMed  Google Scholar 

  21. Jamieson, E., Jeffrey, M., Ironside, J. W., & Fraser, J. R. (2001). Apoptosis and dendritic dysfunction precede prion protein accumulation in 87V scrapie. NeuroReport, 12, 2147–2153.

    Article  CAS  PubMed  Google Scholar 

  22. Arany, I., Tyring, S. K., Hoskins, S. L., Brysk, H., Chen, S. H., Selvanayagam, P., et al. (1996). Response of cultured cells from the epidermis and the buccal mucosa to TGF-beta 1 and comparison to interferon-gamma. In Vivo, 10, 405–409.

    CAS  PubMed  Google Scholar 

  23. Wang, H., & Kochevar, I. E. (2005). Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes. Free Radical Biology and Medicine, 38, 890–897.

    Article  CAS  PubMed  Google Scholar 

  24. Hu, W., Sun, M., & Wang, Y. (2006). Isolation and characterization of antioxidative peptide from scallop Chlamys farreri. Oceanologia et Limnologia Sinica, 371, 14–19.

    Google Scholar 

  25. Liu, X., Zhang, Z., Li, P., Zhu, L., Wang, Y., & Wang, C. (2009). Polypeptide from Chlamys farreri modulates UVB-induced activation of NF-kappaB signaling pathway and protection HaCaT cells from apoptosis. Regulatory Peptides, 153, 49–55.

    Article  CAS  PubMed  Google Scholar 

  26. Camacho, M. E., Carrion, M. D., Lopez-Cara, L. C., Entrena, A., Gallo, M. A., Espinosa, A., et al. (2012). Melatonin synthetic analogs as nitric oxide synthase inhibitors. Mini-Reviews in Medicinal Chemistry, 12, 600–617.

    Article  CAS  PubMed  Google Scholar 

  27. Robinson, M. A., Baumgardner, J. E., & Otto, C. M. (2011). Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radical Biology and Medicine, 51, 1952–1965.

    Article  CAS  PubMed  Google Scholar 

  28. Bian, K., Ghassemi, F., Sotolongo, A., Siu, A., Shauger, L., Kots, A., et al. (2012). NOS-2 signaling and cancer therapy. IUBMB Life, 64, 676–683.

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez Maglio, D. H., Paz, M. L., Ferrari, A., Weill, F. S., Czerniczyniec, A., Leoni, J., et al. (2005). Skin damage and mitochondrial dysfunction after acute ultraviolet B irradiation: Relationship with nitric oxide production. Photodermatology, Photoimmunology and Photomedicine, 21, 311–317.

    Article  CAS  PubMed  Google Scholar 

  30. Feng, X. H., & Derynck, R. (1996). Ligand-independent activation of transformin growth factor β signaling pathways by heteromeric cytoplasmic domains of TGF-β receptors. Journal of Biological Chemistry, 271, 13123–13129.

    Article  CAS  PubMed  Google Scholar 

  31. Luo, K., & Lodish, H. F. (1996). Signaling by chimeric erythropoietin–TGF-beta receptors: Homodimerization of the cytoplasmic domain of the type I TGF-beta receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO Journal, 15, 4485–4496.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Patil, S., Wildey, G. M., Brown, T. L., Choy, L., Derynck, R., & Howe, P. H. (2000). Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from transforming growth factor-beta-induced growth inhibition and apoptosis. Journal of Biological Chemistry, 275, 38363–38370.

    Article  CAS  PubMed  Google Scholar 

  33. Ribeiro, A., Bronk, S. F., Roberts, P. J., Urrutia, R., & Gores, G. J. (1999). The transforming growth factor beta(1)-inducible transcription factor TIEG1, mediates apoptosis through oxidative stress. Hepatology, 30, 1490–1497.

    Article  CAS  PubMed  Google Scholar 

  34. Teramoto, T., Kiss, A., & Thorgeirsson, S. S. (1998). Induction of p53 and Bax during TGF-beta 1 initiated apoptosis in rat liver epithelial cells. Biochemical and Biophysical Research Communications, 251, 56–60.

    Article  CAS  PubMed  Google Scholar 

  35. Souza, F. C., Gobbato, N. B., Maciel, R. G., Prado, C. M., Martins, M. A., Leickj, E. A., et al. (2013). Effects of corticosteroid, montelukast and iNOS inhibition on distal lung with chronic inflammation. Respiratory Physiology & Neurobiology, 185, 435–445.

    Article  CAS  Google Scholar 

  36. Chitra, P., Saiprasad, G., Manikandan, R., & Sudhandiran, G. (2013). Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: A biphasic experimental study. Toxicology Letters, 219, 178–193.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 30471458) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011HM046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbo Wang.

Additional information

Yantao Han and Qixiao Jiang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Jiang, Q., Gao, H. et al. The Anti-apoptotic Effect of Polypeptide from Chlamys farreri (PCF) in UVB-Exposed HaCaT Cells Involves Inhibition of iNOS and TGF-β1. Cell Biochem Biophys 71, 1105–1115 (2015). https://doi.org/10.1007/s12013-014-0315-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0315-8

Keywords

Navigation