Skip to main content

Advertisement

Log in

Protective Effect of FTY720 Against Sevoflurane-Induced Developmental Neurotoxicity in Rats

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Sevoflurane, a common used inhaled anaesthetic, induces neuronal apoptosis in preclinical studies and correlates with functional neurological impairment. We investigated whether FTY720, a known sphingosine-1 phosphate (S1P) receptor agonist, could exert neuroprotective effect against sevoflurane-induced neurotoxicity. Neuroprotective effect of FTY720 was evaluated in vitro in hippocampal neuronal cells from neonatal rats and in vivo in rat pups. In vitro cell apoptosis was determined by flow cytometry after exposure to 3 % sevoflurane for different period of time, or after 6-h exposure to sevoflurane with the presence of FTY720, SEW2871 (selective S1P1 receptor agonist) or combination of FTY720 and VPC23019 (S1P antagonist). Western blot analysis was performed with hippocampal tissue from rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. Neurological function tests were also performed with rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. FTY720, at nanomolar concentration, significantly prevents sevoflurane-induced neuronal apoptosis. SEW2871 showed similar neuroprotective effect to FTY720, whereas VPC23019 abrogated the neuroprotective effect of FTY720 when given together. Western blots results demonstrated that FTY710 significantly preserved the level of phosphorylated ERK1/2, Bcl-2 and Bax. Although anaesthetic treatment did not affect general health and emotional status, sevoflurane-induced cognitive impairment in rat models. Administration of FTY720 at 1 mg/kg significantly attenuated sevoflurane-induced neurocognitive impairment. Although further studies are needed to evaluate the feasibility of clinical usage of FTY720 as neuroprotective agent, the study provides preclinical experimental evidence for the efficacy of FTY720 against sevoflurane-induced developmental neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilder, R. T., Flick, R. P., Sprung, J., Katusic, S. K., Barbaresi, W. J., Mickelson, C., et al. (2009). Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology, 110(4), 796–804.

    Article  PubMed  Google Scholar 

  2. Kalkman, C. J., Peelen, L., Moons, K. G., Veenhuizen, M., Bruens, M., Sinnema, G., et al. (2009). Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology, 110(4), 805–812.

    Article  PubMed  Google Scholar 

  3. Brambrink, A. M., Evers, A. S., Avidan, M. S., Farber, N. B., Smith, D. J., Zhang, X., et al. (2010). Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology, 112(4), 834–841.

    Article  PubMed  CAS  Google Scholar 

  4. Edsall, L. C., Pirianov, G. G., & Spiegel, S. (1997). Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. Journal of Neuroscience, 17(18), 6952–6960.

    PubMed  CAS  Google Scholar 

  5. Shinpo, K., Kikuchi, S., Moriwaka, F., & Tashiro, K. (1999). Protective effects of the TNF-ceramide pathway against glutamate neurotoxicity on cultured mesencephalic neurons. Brain Research, 819(1–2), 170–173.

    Article  PubMed  CAS  Google Scholar 

  6. Edsall, L. C., Cuvillier, O., Twitty, S., Spiegel, S., & Milstien, S. (2001). Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. Journal of Neurochemistry, 76(5), 1573–1584.

    Article  PubMed  CAS  Google Scholar 

  7. Meng, H., Yuan, Y., & Lee, V. M. (2011). Loss of sphingosine kinase 1/S1P signaling impairs cell growth and survival of neurons and progenitor cells in the developing sensory ganglia. PLoS One, 6(11), e27150.

    Article  PubMed  CAS  Google Scholar 

  8. Czech, B., Pfeilschifter, W., Mazaheri-Omrani, N., Strobel, M. A., Kahles, T., Neumann-Haefelin, T., et al. (2009). The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochemical and Biophysical Research Communications, 389(2), 251–256.

    Article  PubMed  CAS  Google Scholar 

  9. Hasegawa, Y., Suzuki, H., Sozen, T., Rolland, W., & Zhang, J. H. (2010). Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke, 41(2), 368–374.

    Article  PubMed  CAS  Google Scholar 

  10. Rolland, II, W. B, Manaenko, A., Lekic, T., Hasegawa, Y., Ostrowski, R., Tang, J., et al. (2011). FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochirurgica. Supplementum, 111, 213–217.

    Article  Google Scholar 

  11. Wei, Y., Yemisci, M., Kim, H. H., Yung, L. M., Shin, H. K., Hwang, S. K., et al. (2011). Fingolimod provides long-term protection in rodent models of cerebral ischemia. Annals of Neurology, 69(1), 119–129.

    Article  PubMed  CAS  Google Scholar 

  12. Norimatsu, Y., Ohmori, T., Kimura, A., Madoiwa, S., Mimuro, J., Seichi, A., et al. (2012). FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms. American Journal of Pathology, 180(4), 1625–1635.

    Article  PubMed  CAS  Google Scholar 

  13. Vincent, A. M., & Maiese, K. (2000). The metabotropic glutamate system promotes neuronal survival through distinct pathways of programmed cell death. Experimental Neurology, 166(1), 65–82.

    Article  PubMed  CAS  Google Scholar 

  14. Lu, Y., Wu, X., Dong, Y., Xu, Z., Zhang, Y., & Xie, Z. (2010). Anesthetic sevoflurane causes neurotoxicity differently in neonatal naive and Alzheimer disease transgenic mice. Anesthesiology, 112(6), 1404–1416.

    Article  PubMed  CAS  Google Scholar 

  15. Sanders, R. D., Xu, J., Shu, Y., Januszewski, A., Halder, S., Fidalgo, A., et al. (2009). Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology, 110(5), 1077–1085.

    Article  PubMed  CAS  Google Scholar 

  16. Wei, H., Kang, B., Wei, W., Liang, G., Meng, Q. C., Li, Y., et al. (2005). Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Research, 1037(1–2), 139–147.

    Article  PubMed  CAS  Google Scholar 

  17. Wakade, C., King, M. D., Laird, M. D., Alleyne, C. H, Jr, & Dhandapani, K. M. (2009). Curcumin attenuates vascular inflammation and cerebral vasospasm after subarachnoid hemorrhage in mice. Antioxidants & Redox Signaling, 11(1), 35–45.

    Article  CAS  Google Scholar 

  18. Laird, M. D., Sukumari-Ramesh, S., Swift, A. E., Meiler, S. E., Vender, J. R., & Dhandapani, K. M. (2010). Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? Journal of Neurochemistry, 113(3), 637–648.

    Article  PubMed  CAS  Google Scholar 

  19. Biegon, A., Fry, P. A., Paden, C. M., Alexandrovich, A., Tsenter, J., & Shohami, E. (2004). Dynamic changes in N-methyl-D-aspartate receptors after closed head injury in mice: Implications for treatment of neurological and cognitive deficits. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 5117–5122.

    Article  PubMed  CAS  Google Scholar 

  20. Oyama, Y., Chikahisa, L., Kanemaru, K., Nakata, M., Noguchi, S., Nagano, T., et al. (1998). Cytotoxic actions of FTY720, a novel immunosuppressant, on thymocytes and brain neurons dissociated from the rat. Japanese Journal of Pharmacology, 76(4), 377–385.

    Article  PubMed  CAS  Google Scholar 

  21. Foster, C. A., Howard, L. M., Schweitzer, A., Persohn, E., Hiestand, P. C., Balatoni, B., et al. (2007). Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. Journal of Pharmacology and Experimental Therapeutics, 323(2), 469–475.

    Article  PubMed  CAS  Google Scholar 

  22. Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., et al. (2002). The immune modulator FTY720 targets sphingosine 1-phosphate receptors. Journal of Biological Chemistry, 277(24), 21453–21457.

    Article  PubMed  CAS  Google Scholar 

  23. Mullershausen, F., Craveiro, L. M., Shin, Y., Cortes-Cros, M., Bassilana, F., Osinde, M., et al. (2007). Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. Journal of Neurochemistry, 102(4), 1151–1161.

    Article  PubMed  CAS  Google Scholar 

  24. Osinde, M., Mullershausen, F., & Dev, K. K. (2007). Phosphorylated FTY720 stimulates ERK phosphorylation in astrocytes via S1P receptors. Neuropharmacology, 52(5), 1210–1218.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, Y., Dong, Y., Wu, X., Lu, Y., Xu, Z., Knapp, A., et al. (2010). The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. Journal of Biological Chemistry, 285(6), 4025–4037.

    Article  PubMed  CAS  Google Scholar 

  26. Chiba, K. (2005). FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacology & Therapeutics, 108(3), 308–319.

    Article  CAS  Google Scholar 

  27. Jevtovic-Todorovic, V., Hartman, R. E., Izumi, Y., Benshoff, N. D., Dikranian, K., Zorumski, C. F., et al. (2003). Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. Journal of Neuroscience, 23(3), 876–882.

    PubMed  CAS  Google Scholar 

  28. Fanselow, M. S. (2000). Contextual fear, gestalt memories, and the hippocampus. Behavioural Brain Research, 110(1–2), 73–81.

    Article  PubMed  CAS  Google Scholar 

  29. Quinn, J. J., Loya, F., Ma, Q. D., & Fanselow, M. S. (2005). Dorsal hippocampus NMDA receptors differentially mediate trace and contextual fear conditioning. Hippocampus, 15(5), 665–674.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, W. Y., Wang, H., Luo, Y., Jia, L. J., Zhao, J. N., Zhang, H. H., et al. (2012). The effects of metabotropic glutamate receptor 7 allosteric agonist N,N′-dibenzhydrylethane-1,2-diamine dihydrochloride on developmental sevoflurane neurotoxicity: role of extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase signaling pathway. Neuroscience, 205, 167–177.

    Article  PubMed  CAS  Google Scholar 

  31. Stessin, A. M., Gursel, D. B., Schwartz, A., Parashar, B., Kulidzhanov, F. G., Sabbas, A. M., et al. (2012). FTY720, sphingosine 1-phosphate receptor modulator, selectively radioprotects hippocampal neural stem cells. Neuroscience Letters, 516(2), 253–258.

    Article  PubMed  CAS  Google Scholar 

  32. Jung, C. G., Kim, H. J., Miron, V. E., Cook, S., Kennedy, T. E., Foster, C. A., et al. (2007). Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia, 55(16), 1656–1667.

    Article  PubMed  CAS  Google Scholar 

  33. Postma, F. R., Jalink, K., Hengeveld, T., & Moolenaar, W. H. (1996). Sphingosine-1-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor. EMBO Journal, 15(10), 2388–2392.

    PubMed  CAS  Google Scholar 

  34. Toman, R. E., Payne, S. G., Watterson, K. R., Maceyka, M., Lee, N. H., Milstien, S., et al. (2004). Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension. Journal of Cell Biology, 166(3), 381–392.

    Article  PubMed  CAS  Google Scholar 

  35. Sato, K., Tomura, H., Igarashi, Y., Ui, M., & Okajima, F. (1997). Exogenous sphingosine 1-phosphate induces neurite retraction possibly through a cell surface receptor in PC12 cells. Biochemical and Biophysical Research Communications, 240(2), 329–334.

    Article  PubMed  CAS  Google Scholar 

  36. Miron, V. E., Schubart, A., & Antel, J. P. (2008). Central nervous system-directed effects of FTY720 (fingolimod). Journal of the Neurological Sciences, 274(1–2), 13–17.

    Article  PubMed  CAS  Google Scholar 

  37. Straiko, M. M., Young, C., Cattano, D., Creeley, C. E., Wang, H., Smith, D. J., et al. (2009). Lithium protects against anesthesia-induced developmental neuroapoptosis. Anesthesiology, 110(4), 862–868.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, Z., Shen, J., Wang, J., Lu, T., Li, C., Zhang, X., et al. (2012). Lithium attenuates bupivacaine-induced neurotoxicity in vitro through phosphatidylinositol-3-kinase/threonine-serine protein kinase B- and extracellular signal-regulated kinase-dependent mechanisms. Neuroscience, 206, 190–200.

    Article  PubMed  CAS  Google Scholar 

  39. Mawhinney, L. J., de Rivero Vaccari, J. P., Alonso, O. F., Jimenez, C. A., Furones, C., Moreno, W. J., et al. (2012). Isoflurane/nitrous oxide anesthesia induces increases in NMDA receptor subunit NR2B protein expression in the aged rat brain. Brain Research, 1431, 23–34.

    Article  PubMed  CAS  Google Scholar 

  40. Fredriksson, A., Ponten, E., Gordh, T., & Eriksson, P. (2007). Neonatal exposure to a combination of N-methyl-d-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology, 107(3), 427–436.

    Article  PubMed  CAS  Google Scholar 

  41. Deogracias, R., Klein, C., Matsumoto, T., Yazdani, M., Bibel, M., & Barde, Y. (2008). Expression of brain-derived neurotrophic factor is regulated by FTY720 in cultured neurons. Multiple Sclerosis, 14, S243.

    Google Scholar 

  42. Coelho, R. P., Payne, S. G., Bittman, R., Spiegel, S., & Sato-Bigbee, C. (2007). The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. Journal of Pharmacology and Experimental Therapeutics, 323(2), 626–635.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyuan Zhang.

Additional information

Hui Zhou and Song Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Li, S., Niu, X. et al. Protective Effect of FTY720 Against Sevoflurane-Induced Developmental Neurotoxicity in Rats. Cell Biochem Biophys 67, 591–598 (2013). https://doi.org/10.1007/s12013-013-9546-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9546-3

Keywords

Navigation