Skip to main content
Log in

Perifosine Induces Cell Apoptosis in Human Osteosarcoma Cells: New Implication for Osteosarcoma Therapy?

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Despite the advances of adjuvant chemotherapy and significant improvement of survival, the prognosis for patients with osteosarcoma is generally poor. The search for more effective anti-osteosarcoma agents is necessary and urgent. Here we report that perifosine induces cell apoptosis and growth inhibition in cultured human osteosarcoma cells. Perifosine blocks Akt/mTOR complex 1 (mTORC1) signaling, while promoting caspase-3, c-Jun N-terminal kinases (JNK), and p53 activation. Further, perifosine inhibits survivin expression probably by disrupting its association with heat shock protein-90 (HSP-90). These signaling changes together were responsible for a marked increase of osteosarcoma cell apoptosis and growth inhibition. Finally, we found that a low dose of perifosine enhanced etoposide- or doxorubicin-induced anti-OS cells activity. The results together suggest that perifosine might be used as a novel and effective anti-osteosarcoma agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

mTORC1:

mTOR complex 1

JNK:

c-Jun N-terminal kinases

ERK:

Extracellular signal-regulated kinase

MTT:

3-[4,5-dimethylthylthiazol-2-yl]-2,5 diphenyltetrazolium bromide

HSP-90:

Heat shock protein-90

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

HDACi:

Histone deacetylase inhibitor

PI3K:

Phosphoinositide 3-kinase

References

  1. Ham, S. J., Schraffordt Koops, H., van der Graaf, W. T., van Horn, J. R., Postma, L., & Hoekstra, H. J. (1998). Historical, current and future aspects of osteosarcoma treatment. European Journal of Surgical Oncology, 24, 584–600.

    Article  PubMed  CAS  Google Scholar 

  2. Rosen, G., Marcove, R. C., Caparros, B., Nirenberg, A., Kosloff, C., & Huvos, A. G. (1979). Primary osteogenic sarcoma: The rationale for preoperative chemotherapy and delayed surgery. Cancer, 43, 2163–2177.

    Article  PubMed  CAS  Google Scholar 

  3. Kondapaka, S. B., Singh, S. S., Dasmahapatra, G. P., Sausville, E. A., & Roy, K. K. (2003). Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Molecular Cancer Therapeutics, 2, 1093–1103.

    PubMed  CAS  Google Scholar 

  4. Ruiter, G. A., Zerp, S. F., Bartelink, H., van Blitterswijk, W. J., & Verheij, M. (1999). Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Research, 59, 2457–2463.

    PubMed  CAS  Google Scholar 

  5. Cirstea, D., Hideshima, T., Rodig, S., Santo, L., Pozzi, S., Vallet, S., et al. (2011). Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Molecular Cancer Therapeutics, 9, 963–975.

    Article  Google Scholar 

  6. Crul, M., Rosing, H., de Klerk, G. J., Dubbelman, R., Traiser, M., Reichert, S., et al. (2002). Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. European Journal of Cancer, 38, 1615–1621.

    Article  PubMed  CAS  Google Scholar 

  7. Van Ummersen, L., Binger, K., Volkman, J., Marnocha, R., Tutsch, K., Kolesar, J., et al. (2004). A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clinical Cancer Research, 10, 7450–7456.

    Article  PubMed  Google Scholar 

  8. Fei, H. R., Chen, G., Wang, J. M., & Wang, F. Z. (2010). Perifosine induces cell cycle arrest and apoptosis in human hepatocellular carcinoma cell lines by blockade of Akt phosphorylation. Cytotechnology, 62, 449–460.

    Article  PubMed  CAS  Google Scholar 

  9. Papa, V., Tazzari, P. L., Chiarini, F., Cappellini, A., Ricci, F., Billi, A. M., et al. (2008). Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia, 22, 147–160.

    Article  PubMed  CAS  Google Scholar 

  10. Chiarini, F., Del Sole, M., Mongiorgi, S., Gaboardi, G. C., Cappellini, A., Mantovani, I., et al. (2008). The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia, 22, 1106–1116.

    Article  PubMed  CAS  Google Scholar 

  11. Sun, H., Yu, T., & Li, J. (2011). Co-administration of perifosine with paclitaxel synergistically induces apoptosis in ovarian cancer cells: More than just AKT inhibition. Cancer Letters, 310, 118–128.

    Article  PubMed  CAS  Google Scholar 

  12. Kumar, A., Fillmore, H. L., Kadian, R., Broaddus, W. C., Tye, G. W., & Van Meter, T. E. (2009). The alkylphospholipid perifosine induces apoptosis and p21-mediated cell cycle arrest in medulloblastoma. Molecular Cancer Research, 7, 1813–1821.

    Article  PubMed  CAS  Google Scholar 

  13. Rahmani, M., Reese, E., Dai, Y., Bauer, C., Payne, S. G., Dent, P., et al. (2005). Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Research, 65, 2422–2432.

    Article  PubMed  CAS  Google Scholar 

  14. Paoloni, M. C., Mazcko, C., Fox, E., Fan, T., Lana, S., Kisseberth, W., et al. (2011). Rapamycin pharmacokinetic and pharmacodynamic relationships in osteosarcoma: A comparative oncology study in dogs. PLoS ONE, 5, e11013.

    Article  Google Scholar 

  15. Zhang, B., Shi, Z. L., Liu, B., Yan, X. B., Feng, J., & Tao, H. M. (2010). Enhanced anticancer effect of gemcitabine by genistein in osteosarcoma: The role of Akt and nuclear factor-kappaB. Anti-Cancer Drugs, 21, 288–296.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, R., Zhang, Z., Zhao, L., Jia, C., Xu, S., Mai, Q., et al. (2010). Inhibition of mTOR signaling by oleanolic acid contributes to its anti-tumor activity in osteosarcoma cells. Journal of Orthopaedic Research, 29, 846–852.

    Article  Google Scholar 

  17. Jin, S., Pang, R. P., Shen, J. N., Huang, G., Wang, J., & Zhou, J. G. (2007). Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells. Apoptosis, 12, 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  18. Hideshima, T., Catley, L., Yasui, H., Ishitsuka, K., Raje, N., Mitsiades, C., et al. (2006). Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood, 107, 4053–4062.

    Article  PubMed  CAS  Google Scholar 

  19. Altieri, D. C. (2003). Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene, 22, 8581–8589.

    Article  PubMed  CAS  Google Scholar 

  20. Altieri, D. C., & Marchisio, P. C. (1999). Survivin apoptosis: An interloper between cell death and cell proliferation in cancer. Laboratory Investigation, 79, 1327–1333.

    PubMed  CAS  Google Scholar 

  21. Altieri, D. C. (2003). Validating survivin as a cancer therapeutic target. Nature Reviews Cancer, 3, 46–54.

    Article  PubMed  CAS  Google Scholar 

  22. Trieb, K., Lehner, R., Stulnig, T., Sulzbacher, I., & Shroyer, K. R. (2003). Survivin expression in human osteosarcoma is a marker for survival. European Journal of Surgical Oncology, 29, 379–382.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, Y. F., Liang, X. J., Liu, Y. Y., Gong, W., Liu, J. X., Wang, X. P., et al. (2010). +Antisense oligonucleotide targeting survivin inhibits growth by inducing apoptosis in human osteosarcoma cells MG-63. Neoplasma, 57, 501–506.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, H. Z., Wang, Y., Gao, P., Lin, F., Liu, L., Yu, B., et al. (2006). Silencing stathmin gene expression by survivin promoter-driven siRNA vector to reverse malignant phenotype of tumor cells. Cancer Biology & Therapy, 5, 1457–1461.

    Article  CAS  Google Scholar 

  25. Zou, J., Gan, M., Mao, N., Zhu, X., Shi, Q., & Yang, H. (2010). Sensitization of osteosarcoma cell line SaOS-2 to chemotherapy by downregulating survivin. Archives of Medical Research, 41, 162–169.

    Article  PubMed  CAS  Google Scholar 

  26. Fortugno, P., Beltrami, E., Plescia, J., Fontana, J., Pradhan, D., Marchisio, P. C., et al. (2003). Regulation of survivin function by Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 100, 13791–13796.

    Article  PubMed  CAS  Google Scholar 

  27. Merrill, A. H., Jr, van Echten, G., Wang, E., & Sandhoff, K. (1993). Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. Journal of Biological Chemistry, 268, 27299–27306.

    PubMed  CAS  Google Scholar 

  28. Charles, A. G., Han, T. Y., Liu, Y. Y., Hansen, N., Giuliano, A. E., & Cabot, M. C. (2001). Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemotherapy and Pharmacology, 47, 444–450.

    Article  PubMed  CAS  Google Scholar 

  29. Vinall, R. L., Hwa, K., Ghosh, P., Pan, C. X., Lara, P. N., Jr, & de Vere White, R. W. (2007). Combination treatment of prostate cancer cell lines with bioactive soy isoflavones and perifosine causes increased growth arrest and/or apoptosis. Clinical Cancer Research, 13, 6204–6216.

    Article  PubMed  CAS  Google Scholar 

  30. Ruiter, G. A., Verheij, M., Zerp, S. F., & van Blitterswijk, W. J. (2001). Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. International Journal of Radiation Oncology Biology Physics, 49, 415–419.

    Article  CAS  Google Scholar 

  31. Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Reviews Cancer, 2, 489–501.

    Article  PubMed  CAS  Google Scholar 

  32. Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., & Mills, G. B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews Drug Discovery, 4, 988–1004.

    Article  PubMed  CAS  Google Scholar 

  33. Garcia-Echeverria, C., & Sellers, W. R. (2008). Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene, 27, 5511–5526.

    Article  PubMed  CAS  Google Scholar 

  34. LoPiccolo, J., Granville, C. A., Gills, J. J., & Dennis, P. A. (2007). Targeting Akt in cancer therapy. Anti-Cancer Drugs, 18, 861–874.

    PubMed  CAS  Google Scholar 

  35. Lu, Y., Wang, H., & Mills, G. B. (2003). Targeting PI3K-AKT pathway for cancer therapy. Reviews in Clinical & Experimental Hematology, 7, 205–228.

    CAS  Google Scholar 

  36. Gills, J. J., & Dennis, P. A. (2009). Perifosine: Update on a novel Akt inhibitor. Current Oncology Reports, 11, 102–110.

    Article  PubMed  CAS  Google Scholar 

  37. Hennessy, B. T., Lu, Y., Poradosu, E., Yu, Q., Yu, S., Hall, H., et al. (2007). Pharmacodynamic markers of perifosine efficacy. Clinical Cancer Research, 13, 7421–7431.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, Q., Wang, X., Hernandez, A., Hellmich, M. R., Gatalica, Z., & Evers, B. M. (2002). Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. Journal of Biological Chemistry, 277, 36602–36610.

    Article  PubMed  CAS  Google Scholar 

  39. Tazzari, P. L., Tabellini, G., Ricci, F., Papa, V., Bortul, R., Chiarini, F., et al. (2008). Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells. Cancer Research, 68, 9394–9403.

    Article  PubMed  CAS  Google Scholar 

  40. Simbulan-Rosenthal, C. M., Rosenthal, D. S., Luo, R., & Smulson, M. E. (1999). Poly(ADP-ribosyl)ation of p53 during apoptosis in human osteosarcoma cells. Cancer Research, 59, 2190–2194.

    PubMed  CAS  Google Scholar 

  41. Schuler, M., Bossy-Wetzel, E., Goldstein, J. C., Fitzgerald, P., & Green, D. R. (2000). p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. Journal of Biological Chemistry, 275, 7337–7342.

    Article  PubMed  CAS  Google Scholar 

  42. Workman, P., & Powers, M. V. (2007). Chaperoning cell death: A critical dual role for Hsp90 in small-cell lung cancer. Nature Chemical Biology, 3, 455–457.

    Article  PubMed  CAS  Google Scholar 

  43. Whitesell, L., & Lindquist, S. L. (2005). HSP90 and the chaperoning of cancer. Nature Reviews Cancer, 5, 761–772.

    Article  PubMed  CAS  Google Scholar 

  44. Neckers, L. (2002). Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends in Molecular Medicine, 8, S55–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang-ping Gu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Perifosine inhibits Akt phosphorylation in cultured osteosarcoma cells. U2OS, SaOs-2 and MG-63 osteosarcoma cells were treated with indicated concentration of perifosine for 12 h, p-Akt (Ser 473) and Akt1 were examined by Western blot (EPS 814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, C., Wei, Jj., Wang, Zy. et al. Perifosine Induces Cell Apoptosis in Human Osteosarcoma Cells: New Implication for Osteosarcoma Therapy?. Cell Biochem Biophys 65, 217–227 (2013). https://doi.org/10.1007/s12013-012-9423-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9423-5

Keywords

Navigation